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Abstract

A linear basis of quantum supergroup Uqgl(1|1) is given, and the

nonexistence of non-zero right integral and non-zero left integral on

Uqgl(1|1) are proved. For some Hopf subalgebras of Uqgl(1|1), we

construct non-zero right integrals and non-zero left integrals on them.

1 Introduction

Integrals of Hopf algebras, in particular, integrals of quasitriangular ribbon

Hopf algebras play an important role in construction of Hennings type of

invariants of 3-manifolds [1]. Without using representation theory of Hopf

algebras, Hennings points out a method to obtain 3-manifold invariants. Ac-

cording to Hennings, once directly labeling the link diagrams by elements of
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quasitriangular ribbon Hopf algebras, a universal invariants of links can be

obtained. In order to get 3-manifold invariants, certain linear functionals of

the Hopf algebra must be constants for a series of algebraic representation-

s of Kirby moves over a family of links that can be transformed mutually

under Kirby moves. The left integrals provide candidates for those linear

functionals. Over the past years, researchers have been looking for concrete

examples of quasitriangular ribbon Hopf algebras to try to work out invari-

ants for simple 3-manifolds [2][3][4]. As we know, all examples in the field are

non-graded quasitriangular ribbon Hopf algebras. In this paper, we consider

integrals of quantum supergroups, specifically, the simplest Z2-graded quan-

tum group Uqgl(1|1). Although there is no non-zero right (or left) integrals

on Uqgl(1|1), for some interesting subalgebras of Uqgl(1|1), we get non-zero

right integrals and left integrals on them.

The paper is organized as follows. In Section 2 we recall basic structure of

Uqgl(1|1) and give a linear base of Uqgl(1|1). In Section 3 we discuss integrals

on Uqgl(1|1), and we prove that there is no non-zero right integral or non-

zero left integral on Uqgl(1|1). Section 4 gives several Hopf subalgebras of

Uqgl(1|1), and we construct right integrals and left integrals for them.

2 Quantum supergroup Uqgl(1|1)

2.1 Superalgebra gl(1|1)

Recall that a vector superspace of super-dimension (p|q) is a Z2-graded vector

space V = V0⊕V1 whose 0-summand V = V0 has dimension p and 1-summand

V = V1 has dimension q [7]. A complex vector superspace Cp ⊕ Cq is de-
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noted by Cp|q. The 0-summand of the superspace is called bosonic part and

vectors belonging to bosonic part are called bosons. The 1-summand of the

superspace is called fermionic part and vectors belonging to fermionic part

are called fermions. All endomorphisms of the superspace Cp|q forms a Lie

super-algebra, which is denoted by gl(p|q). Concretely, the Lie super-algebra

consists of (p|q) × (p|q) matrices M =

 A B

C D

. For this super-algebra,

its bosonic part, or the even part, consists of

 A 0

0 D

; the fermionic part,

the odd part, consists of

 0 B

C 0

. The Lie super-bracket is defined as

super-commutator [X, Y ] = XY − (−1)deg(X)deg(Y )Y X, where deg(X) is 0 if

X is a boson and deg(X) is 1 if X is a fermion. And the definition extends

linearly to the whole gl(1|1).

The Lie super-algebra gl(1|1) is generated by the following four elements:

E =

 1 0

0 1

 , G =

 0 0

0 1

 , X =

 0 0

1 0

 Y =

 0 1

0 0

 ,

which satisfy the following relations:

[X, Y ] = XY − (−1)degX deg Y Y X = E

X2 = 0, Y 2 = 0,

[G,X] = X, [G, Y ] = −Y

[E,G] = [E,X] = [E, Y ] = 0,
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where

degE = degG = 0,

degX = deg Y = 1.

It is known those relations define the super-algebra gl(1|1).

2.2 Quantization of superalgebra gl(1|1)

The universal enveloping algebra Ugl(1|1) admits a deformation, which re-

sults in the quantum super-algebra Uqgl(1|1) [9][10]. Notice that the mul-

tiplication in Ugl(1|1) is still written as regular product. We deform one

defining relation of Ugl(1|1) about two odd generators X and Y . That is,

[X, Y ] = XY − (−1)degX deg Y Y X =
qE − q−E

q − q−1
.

To make sense this non-algebraic expression, we join power series in E to

the algebra. Denote the parameter of the deformation by h, put q = eh and

write

H = qE/2 = ehE/2 =
∑
n=0

hnEn

2nn!
.

Then, the quantum super-algebra Uqgl(1|1) has a generator set { G, X,

Y , H, H−1 } and the defining relations:

HX = XH, HY = Y H, HG = GH, H−1Y = Y H−1 (1)

H−1X = XH−1, H−1G = GH−1, HH−1 = H−1H = 1, (2)

GX −XG = X, GY − Y G = −Y, X2 = 0, Y 2 = 0, (3)

XY + Y X =
H2 −H−2

q − q−1
. (4)
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If we denote the tensor algebra (the free associative algebra generated by

G, X, Y , H, H−1 over the complex field C) by T , we have Uqgl(1|1) = T/I,

where I is a two-sided ideal in T generated by the following elements:

HG−GH, H−1G−GH−1,

HY − Y H, H−1Y − Y H−1,

HX −XH, H−1X −XH−1,

X2, Y 2, HH−1 − 1, H−1H − 1,

GX −XG−X, GY − Y G+ Y,

XY + Y X − H2 −H−2

q − q−1
.

In the quantum super-algebra Uqgl(1|1), there is a structure of Hopf al-

gebra when it is properly equipped with a comultiplication, a counit and an

antipode.

The comultiplication as an algebraic map

∆ : Uqgl(1|1)→ Uqgl(1|1)⊗ Uqgl(1|1)

can be defined as follows for generators,

∆(H) = H ⊗H, ∆(H−1) = H−1 ⊗H−1, ∆(G) = G⊗ 1 + 1⊗G,

∆(X) = X ⊗H−1 +H ⊗X, ∆(Y ) = Y ⊗H−1 +H ⊗ Y,

and algebraically be extended to the whole Uqgl(1|1) with preserving grades.

The graded tensor product follows

a⊗ b · c⊗ d = (−1)deg b deg cac⊗ bd.

The counit as an algebraic map

ε : Uqgl(1|1)→ C
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can be assigned for generators as

ε(H) = 1, ε(H−1) = 1, ε(1) = 1,

ε(G) = 0, ε(X) = 0, ε(Y ) = 0,

and then be algebraically extended to the Uqgl(1|1).

The antipode as an anti-algebraic map

S : Uqgl(1|1)→ Uqgl(1|1)

can be assigned for generators as

S(H) = H−1, S(H−1) = H,

S(G) = −G, S(X) = −X, S(Y ) = −Y

and then be algebraically extended to the Uqgl(1|1). Here the care need to

be take for the degrees of elements in the following fashion

S(AB) = (−1)degAdegBS(B)S(A).

We can easily verify that ∆, ε and S are all well-defined as graded al-

gebraic maps. So (Uqgl(1|1), ·,∆, η, ε, S) is a Hopf super-algebra, which is

called quantum supergroup, where η is the unit.

In order to study integrals of Uqgl(1|1), linear basis is important. We

therefore give a linear base in this section. Let’s first give some useful rela-

tions among generators.

Lemma 2.1.

GnX = X(G+ 1)n, XGn = (G− 1)nX,

GnY = Y (G− 1)n, Y Gn = (G+ 1)nX.
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The proof of this lemma is straightforward by using mathematical induc-

tion.

Proposition 2.1. {H lGnXδY τ : l ∈ Z, n ∈ Z+, δ, τ ∈ Z2} = Λ forms a

basis of quantum supergroup Uqgl(1|1), where Z+ is the set of nonnegative

integers.

Proof. We can directly verify this proposition by using the lemma 2.1 and

basic definitions. We also can verify this proposition by using standard ar-

guments as in the proof of the classical PBW theorem. Since the idea I is

not homogeneous, T/I = Uqgl(1|1) is not graded. However, it is a filtered

algebra. Therefore, the proposition is true [7][8].

3 Integrals of Uqgl(1|1)

Let H be a Hopf algebra with multiplication ·, unit η, comultiplication ∆,

counit ε and antipode S. A right integral
∫ r

on H is an element of H∗, the

dual space of H, such that

(

∫ r

⊗id) ◦∆ = η ◦
∫ r

,

or ∫ r

·x∗ = π(x∗)

∫ r

,

where x∗ ∈ H∗ and π is an augmentation of H∗ given by π(x∗) = 〈x∗, 1H〉.

Similarly, we can define left integrals on Hopf algebras [5][6]. For quantum

supergroup Uqgl(1|1), we will prove there is no non-zero right integral or

non-zero left integral. We give a useful lemma about the comultiplication of

Gn. It can be confirmed by induction.
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Lemma 3.1. For n ≥ 1,

∆(Gn) =
n∑
k=0

(
n

k

)
Gn−k ⊗Gk.

Theorem 3.1. There does not exist any non-zero right integral on the quan-

tum supergroup Uqgl(1|1).

Proof. Suppose
∫ r ∈ Uqgl(1|1)∗ is a non-zero right integral, according to the

definition of right integrals, (
∫ r⊗id)∆ = η ◦

∫ r
. So for x ∈ Uqgl(1|1),

(

∫ r

⊗id)∆(x) = η ◦
∫ r

(x),

or
∑
(x)

∫ r

(x(1))x(2) =

∫ r

(x)1.

There is a linear basis for quantum supergroup Uqgl(1|1) as in Proposition

2.1. In order to prove the nonexistence of nonzero integrals, we only need

to verify that the value of the integral on each basis element of Λ must be

zero. For the convenience, we divide the basis elements into 4 types. The

same type elements share some common properties, so that the verification

becomes easier.

Type 1 basis elements : H l, Gn, X, Y and the unit element 1. Apply the

definition of right integrals to X, we have (
∫ r⊗id)∆(X) =

∫ r
(X)1.

Then ∫ r

(X)H−1 +

∫ r

(H)X =

∫ r

(X)1.

Since 1, H−1, and X are all basis elements, the coefficients of their

linear combination must be zeroes. So,
∫ r

(X) = 0. Similarly, we can

get
∫ r

(Y ) = 0. When l 6= 0, (
∫ r⊗id)∆(H l) =

∫ r
(H l)1 implies that
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∫ r
(H l)H l =

∫ r
(H l)1. That means

∫ r
(H l) = 0 since H l and 1 are

not parallel vectors. When n = 1, (
∫ r⊗id)∆(G) =

∫ r
(G)1 implies

that
∫ r

1 = 0. When n = 2, (
∫ r⊗id)∆(G2) =

∫ r
(G2)1 implies that∫ r

G = 0. Suppose
∫ r
Gk = 0 for k ≤ n, then use Lemma 3.1, we have

n+2∑
k=0

(
n+ 2

k

)∫ r

(Gn+2−k)Gk =

∫ r

(H lGn+2)1.

This implies that
∫ r
Gn+1 = 0. Therefore, for any positive integer n,∫ r

Gn = 0.

Type 2 basis elements: H lGn, H lX, H lY , GnX, GnY and XY . Let’s

compute the integral at each of these elements. From (
∫ r⊗id)∆(XY ) =∫ r

(XY )1, we have∫ r

(XY )H−2−
∫ r

(HY )H−1X+

∫ r

(HX)H−1Y+

∫ r

(H2)XY =

∫ r

(XY )1.

Since this is a linear combination of 5 basis elements,
∫ r

(XY ) must be

zero. For l 6= 0 and n 6= 0, from (
∫ r⊗id)∆(H lGn) =

∫ r
(H lGn)1, we

have the equation

n∑
k=0

(
n

k

)∫ r

(H lGn−k)H lGk =

∫ r

(H lGn)1.

The linear independence of basis elements implies that
∫ r

(H lGn) = 0.

When l 6= 1, from (
∫ r⊗id)∆(H lX) =

∫ r
(H lX)1 we get

∫ r
(H lX) = 0.

When l = 1, we compute

∆(HGX) = HGX ⊗ 1 +HX ⊗G+H2G⊗HX +H2 ⊗HGX,

and apply integral, we get
∫ r

(HX)G+
∫ r

(H2G)HX. Therefore
∫ r

(HX) =

0. Since ∆(GnX) =
∑n

k=0

(
n
k

)
(Gn−kX⊗H−1Gk+HGn−k⊗GkX), then
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∑n
k=0

(
n
k

)
(
∫ r

(Gn−kX)H−1Gk +
∫ r

(HGn−k)GkX) =
∫ r

(GnX)1. This

implies
∫ r

(GnX) = 0. Since the generator Y plays exactly rule as X

does in generating relations, we can get
∫ r

(H lY ) = 0 and
∫ r

(GnY ) = 0

without detailed computation.

Type 3 basis elements: H lXY , GnXY , H lGnX, H lGnY . When l 6= 2,

we compute that ∆(H lXY ) = H lXY ⊗ H l−2 − H l+1Y ⊗ H l−1X +

H l+1X ⊗ H l−1Y + H l+2 ⊗ H lXY , and apply the definition of right

integral. By the linear independence of basis elements, we must have∫ r
(H lXY ) = 0. When l = 2, write (

∫ r⊗id)∆(H2GXY ) =
∫ r

(H2GXY )1

out, and cancel the first term on both sides, we have

−
∫ r

(H3GY )HX +

∫ r

(H3GX)HY +

∫ r

(H4G)H2XY

+

∫ r

(H2XY )G−
∫ r

(H3Y )HGX +

∫ r

(H3X)HGY

+

∫ r

(H4)H2GXY = 0.

This equation implies
∫ r

(H2XY ) = 0. When l 6= 1, by Lemma 3.1,

we have ∆(H lGnX) =
∑n

k=0

(
n
k

)
(H lGn−kX ⊗ H l−1Gk + H l+1Gn−k ⊗

H lGkX). The equation

n∑
k=0

(
n

k

)
(

∫ r

(H lGn−kX)H l−1Gk+

∫ r

(H l+1Gn−k)H lGkX) =

∫ r

(H lGnX)1

implies that
∫ r

(H lGnX) = 0. When l = 1, we compute (
∫ r⊗id)∆(HG2X) =
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∫ r
(HG2X)1, and we have∫ r

(HG2X)1 + 2

∫ r

(HGX)G+

∫ r

(HX)G2 +

+

∫ r

(H2G2)HX + 2

∫ r

(H2G)HGX +

∫ r

(H2)G2X

=

∫ r

(HG2X)1.

From this equation, we have
∫ r

(HGX) = 0. Suppose
∫ r

(HGkX) = 0

for k ≤ n, we can check
∫ r

(HGn+1X) = 0 by using Lemma 3.1. Write

(
∫ r⊗id)∆(HGn+2X) =

∫ r
(HGn+2X)1 out as

n+2∑
k=0

(
n+ 2

k

)
(

∫ r

(HGn+2−kX)Gk +

∫ r

(HGn+2−k)GkX),

we see
∫ r

(HGn+1X) = 0. We can get
∫ r

(H lGnY ) = 0 by replace X

by Y in above proof.

By using Lemma 3.1, we have

∆(GnXY ) =
n∑
k=0

(
n

k

)
(Gn−kXY ⊗H−2Gk −HGn−kY

⊗H−1GkX +HGn−kX ⊗H−1GkY +H2Gn−k ⊗GkXY ).

Apply the definition of right integrals, we get a linear combination

of some basis elements. Therefore, each coefficient must be zero, so∫ r
(GnXY ) = 0.

Type 4 basis elements: H lGnXY = x where l 6= 0 and n 6= 0. We com-
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pute the comultiplication of x by using Lemma 3.1.

∆(H lGnXY ) = H l ⊗H l · (
n∑
k=0

(
n

k

)
Gn−k ⊗Gk) ·

(X ⊗H−1 +H ⊗X) · (Y ⊗H−1 +H ⊗ Y )

=
n∑
k=0

(
n

k

)
(H lGn−kXY ⊗H l−2Gk −H l+1Gn−kY ⊗H l−1GkX

+H l+1Gn−kX ⊗H l−1GkY +H l+2Gn−k ⊗H lGkXY ).

Using the definition of right integral, we have

n∑
k=0

(
n

k

)
(

∫ r

(H lGn−kXY )H l−2Gk −
∫ r

(H l+1Gn−kY )H l−1GkX

+

∫ r

(H l+1Gn−kX)H l−1GkY +

∫ r

(H l+2Gn−k)H lGkXY )

=

∫ r

(H lGnXY )1

The left-hand side of this equation is a linear combination of some

basis elements. When l 6= 2, the vector
∫ r

(H lGnXY )1 is presented by

a linear combination of some other basis elements. But 1 is also a basis

element. Therefore, each coefficient must be zero. So,
∫ r

(H lGnXY ) =

0. When l = 2, for any positive integer n, the first term of the left-hand

side of the above equation is the same as its right-hand side. After these

two term are canceled out, the rest integral values must be zero since

they are coefficients of a linear combination of basis vectors which is

equal to zero. If we compute ∆(H2G2XY ), and apply definition of right

integrals, we get
∫ r

(H2GXY ) = 0. Now let’s suppose
∫ r

(H2GkXY ) =

0 for k ≤ n, we then compute ∆(H2Gn+2XY ). After integration, we

have
∫ r

(H2Gn+1XY ) = 0.
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Considering all the cases, we can conclude that the only situation where

(
∫ r⊗1)∆(x) = η ◦

∫ r
(x) is satisfied is

∫ r
= 0. Therefore, there does not exit

non-zero right integral on Uqgl(1|1).

Theorem 3.2. There does not exit non-zero left integral on quantum super-

group Uqgl(1|1).

The proof of this theorem is similar to that of Theorem 3.1.

4 Hopf subalgebras of Uqgl(1|1) and their in-

tegrals

From Theorems 3.1 and 3.2, it is impossible to use quantum supergroup

Uqgl(1|1) to construct Hennings type invariants of 3-manifolds. Howev-

er,There are several Hopf subalgebras of the quantum supergroup Uqgl(1|1).

We may construct integrals for them.

The Hopf subalgebra of Uqgl(1|1) generated by H, X and Y is denoted by

〈H,X, Y 〉, the Hopf subalgebra generated by H is denoted by 〈H〉, and the

Hopf subalgebra generated by G is denoted by 〈G〉. These three subalgebras

are all infinite dimensional. The following theorem give their linear basis.

Theorem 4.1. The Hopf subalgebra 〈H,X, Y 〉 has a linear basis given by

{H lXδY τ : l ∈ Z, δ, τ ∈ Z2}.

The Hopf subalgebra 〈H〉 has a linear basis H l, where l ∈ Z. The Hopf

subalgebra 〈G〉 has a linear basis Gn, where l ∈ Z≥0.
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The proof of this theorem is similar as that of Proposition 2.1.

Now let’s construct integrals on 〈H,X, Y 〉. We define a linear function∫ r
, ∫ r

: 〈H,X, Y 〉 −→ C

by assigning
∫ r
H2XY = 1,

∫ r
B = 0 for any other basis element B, and

then linearly extending to the whole algebra. We may write
∫ r

= (H2XY )∗,

which is an element of the dual space 〈H,X, Y 〉∗.

Theorem 4.2.
∫ r

is a right integral on the Hopf algebra 〈H,X, Y 〉. All right

integrals form an one-dimensional subspace of 〈H,X, Y 〉∗.

Proof. We check if the functional
∫ r

satisfies (
∫ r⊗1)∆(x) = η ◦

∫ r
(x) for

any basis element x, then
∫ r

must be (H2XY )∗ or some scale k multiple

of (H2XY )∗. This implies the integral space is one dimensional. There are

three types of basis elements. Type one are H l, X and Y , where l 6= 0. Type

two are H lX, H lY , XY and the unit 1. Type three is H lXY , where l 6= 0.

We can check the
∫ r

at each basis element.

For type one basis elements, as the proof of Theorem 3.1, we can easily get

that
∫ r

(H l) = 0,
∫ r

(X) = 0, and
∫ r

(Y ) = 0. For type two basis elements,

as the proof of Theorem 3.1, we have
∫ r

(H lX) = 0 and
∫ r

(H lY ) = 0 when

l 6= 1. And (
∫ r⊗1)∆(XY ) =

∫ r
(XY )1 just implies that

∫ r
(XY ) = 0,∫ r

(HX) = 0 and
∫ r

(HY ) = 0. For type three basis elements, when l 6= 2,
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as the proof of Theorem 3.1, we have
∫ r

(H lXY ) = 0. But, when l = 2,

(

∫ r

⊗1)∆(H2XY )

=

∫ r

(H2XY )1−
∫ r

(H3Y )HX +

∫ r

(H3X)HY +

∫ r

(H4)H2XY

=

∫ r

(H2XY )1.

This just implies we can assign non-zero number to
∫ r

(H2XY ), and they

form a subspace with dimension one.

We define another linear functional
∫ l

as∫ l

: 〈H,X, Y 〉 −→ C

For basis element x,
∫ l
x = 1 when x = H−2XY , and

∫ l
x = 0 if x 6= H−2XY .

This functional is the dual of H−2XY ,
∫ l

= (H−2XY )∗.

Theorem 4.3.
∫ l

is a left integral on Hopf subalgebra 〈H,X, Y 〉. All left

integrals form an one-dimensional subspace of 〈H,X, Y 〉∗.

The proof is similar as that of Theorem 4.3.

From the proof of Theorem 3.1, we have the following theorem about

integrals of Hopf subalgebras 〈H〉 and 〈G〉.

Theorem 4.4. The Hopf subalgebra 〈H〉 is the center of the Hopf algebras

Uqgl(1|1), and it has a left integral which is also a right integral defined by

the dual of the unit element,
∫

1 = 1 and
∫
H l = 0. The Hopf subalgebra 〈G〉

does not have a right or left integral.
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5 The quantum superalgebra Uqgl(n|m) and

their sub superalgebras

The quantum superalgebra Uqgl(n|m) is a free associative algebra over C with

a parameter q ∈ C generated by generators ki, k
−1
i , where i = 1, 2, · · ·, n+m,

and generators ej, fj, where j = 1, 2, · · ·, n+m− 1. The defining relations,

the Cartan-Kac relations, e-Serre relations, and f -Serre relations, are given

in the following [12].

The Cartan-Kac relations:

kikj = kjki, kik
−1
i = k−1i ki = 1;

kiejk
−1
i = q(δij−δij+1)/2ej, kifjk

−1
i = q−(δij−δij+1)/2fj;

eifj − fjei = 0, if i 6= j;

eifi − fiei = (k2i k
−2
i+1 − k2i+1k

−2
i )/(q − q−1), if i 6= n;

enfn + fnen = (k2nk
2
n+1 − k−2n k−2n+1)/(q − q−1).

The Serre relations for the ei (e-Serre relations):

eiej = ejei if |i− j| 6= 1, en = 0;

e2i ei+1 − (q + q−1)eiei+1ei + ei+1e
2
i = 0, i 6= n, n+m− 1;

enen−1enen+1 + en−1enen+1en + enen+1enen−1 +

en+1enen−1en − (q + q−1)enen−1en+1en = 0.

The Serre relations for the fi (f-Serre relations): the relations are ob-

tained by replacing every ei by fi in e-Serre relations above.
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The Z2-grading is defined by the requirement that the only odd generators

are en and fn. It can shown that Uqgl(n|m) is a Hopf superalgebra with

comultiplication ∆, counit ε and antipode S defined for generators as follows

and then graded-algebraically extended to the whole algebra.

ε(ej) = ε(fj) = 0, ε(ki) = 1.

∆(ki) = ki ⊗ ki,

∆(ej) = ej ⊗ kjk−1j+1 + k−1j kj+1 ⊗ ej, if j 6= n,

∆(en) = en ⊗ knkn+1 + k−1n k−1n+1 ⊗ en,

∆(fj) = fj ⊗ kjk−1j+1 + k−1j kj+1 ⊗ fj, if j 6= n,

∆(fn) = fn ⊗ knkn+1 + k−1n k−1n+1 ⊗ fn.

S(ki) = k−1i ,

S(ej) = −qej, S(fj) = −qfj, if i 6= n,

S(en) = −en, S(fn) = −fn.

Lemma 5.1. The sub super algebra Aq of Uqgl(n|m) generated by k±1n , k±1n+1,

en and fn is isomorphic to Uqgl(1|1). The Aq is only subalgebra of Uqgl(n|m)

which is isomorphic to Uqgl(1|1).

Proof. Denote the sub super algebra generated by these 6 generators by Aq.

Then Aq has the following defining relations:

knk
−1
n = k−1n kn = 1, kn+1k

−1
n+1 = k−1n+1kn+1 = 1; (5)

knkn+1 = kn+1kn; knenk
−1
n = q

1
2 en, knfnk

−1
n = q−

1
2fn; (6)

kn+1enk
−1
n+1 = q−

1
2 en, kn+1fnk

−1
n+1 = q

1
2fn; e2n = 0, (7)

enfn + fnen = (k2nk
2
n+1 − k−2n k−2n+1)/(q − q−1); f 2

n = 0. (8)
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We know Uqgl(1|1) has 5 generators and the defining relations (1)-(4). Let

Eij be a 2× 2 matrix whose (i, j) entry is 1 and the rest entries are all zero.

We define a map ρ : Aq −→ Uqgl(1|1) by assigning an element in Uqgl(1|1)

to each generator of Aq as follows:

ρ(kn) = qE11/2, ρ(k−1n ) = q−E11/2,

ρ(kn+1) = qE22/2 = qG/2, ρ(k−1n+1) = q−E22/2 = q−G/2,

ρ(en) = E12 = Y, ρ(fn) = E21 = X,

then graded-algebraically extend to the whole algebra Aq. ρ will be Hopf

algebra isomorphism preserving grading of elements. We first verify ρ is an

1−1 and onto algebraic isomorphism. It is not hard to get defining relations

for Uqgl(1|1) from the defining relations (5)-(8) of Aq by using the map ρ.

The generators H and H−1 of Uqgl(1|1) are given by ρ(knkn+1) = H and

ρ(k−1n k−1n+1) = H−1. The generator G is given by the second term of the

Taylor expansion ρ(kn+1) = qG/2. To see that, set q = e2h, then qG/2 =

ehG = I + hG + 1
2!
h2G2 + · · ·. The relations HH−1 = H−1H = 1 can be

obtained by writing ρ(knk
−1
n kn+1k

−1
n+1) = 1 in two ways.

HX = ρ(knkn+1)ρ(fn) = ρ(knkn+1fn) = ρ(knq
1/2fnkn+1)

= ρ(q1/2knfnkn+1) = ρ(q1/2q−1/2fnknkn+1)

= ρ(fn)ρ(knkn+1) = HX.

Similarly, we can get H−1X = XH−1, HY = Y H, and H−1Y = Y H−1.

To get HG = GH and H−1G = GH−1, expand HqG/2 = ρ(knkn+1kn+1) =

ρ(kn+1knkn+1) = qG/2H, and compare both sides in terms of parameter h. S-

ince ρ(kn+1fn) = ρ(q1/2fnkn+1), then qG/2X = q1/2XqG/2. Using substitution
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q = e2h, we have ehGX = ehXqhG. Expand both sides,

X + hGX +
1

2!
h2G2X +

1

3!
h3G3X + · · ·

= X + hXG+
1

2!
h2XG2 +

1

3!
h3XG3 + · · ·+ hX + h2XG+

1

2!
h3XG2 +

1

3!
h4XG3 + · · ·+ 1

2!
h2X +

1

2!
h3XG+ · · ·,

we have GX = XG+X, G2X = X(G+ 1)2, and GlX = X(G+ 1)l for any

positive integer l. From Lemma 2.1, only essential relation is GX = XG+X.

Similarly, we can getGY = Y G−Y . From ρ(fnen+enfn) = ρ(
k2nk

2
n+1−k

−2
n k−2

n+1

q−q−1 ),

we have XY + Y X = H2−H−2

q−q−1 . The e2n = 0 and f 2
n = 0 give X2 = 0 and

Y 2 = 0. So, the image of the generators of Aq generate Uqgl(1|1). ρ is an

1− 1 and onto algebraic map.

Now we need to verify ρ is a Hopf algebra map. If use subscript A

for structure maps in Aq, then we need check εA = ερ, ∆ρ = (ρ ⊗ ρ)∆A

and ρSA = Sρ. Or, use these equations to define Hopf algebra structure

on Uqgl(1|1) from Aq. For example, εA(kn+1) = ερ(kn+1) gives ε(G) = 0.

∆ρ(kn+1) = (ρ⊗ ρ)∆A(kn+1) gives ∆(qG/2) = qG/2 ⊗ qG/2. Expand in terms

of parameter h, and compare both sides, we have ∆(G) = G ⊗ 1 + 1 ⊗ G,

∆(G2) = G2⊗1+2G⊗G+1⊗G2, ∆(Gl) =
∑l

k=0

(
l
k

)
Gl−k⊗Gk for any positive

integer l. By Lemma 3.1, the only essential relation is ∆(G) = G⊗1+1⊗G.

∆ρ(fn) = ∆(X)

= (ρ⊗ ρ)∆A(fn) = (ρ⊗ ρ)(fn ⊗ knkn+1 + k−1n k−1n+1 ⊗ fn)

= X ⊗H +H−1 ⊗X.

From ρSA(kn+1) = Sρ(kn+1) we have S(qG/2) = q−G/2. Expand it, we get

S(G) = −G. Similarly, we can confirm all other defining relations for Hopf
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algebra structure of Uqgl(1|1).

By the defining relations (5)-(8) of Uqgl(n|m), the only odd generators

are en and fn. Therefore we can conclude that the Aq is only sub super

algebra of Uqgl(n|m) which is isomorphic to Uqgl(1|1).

Theorem 5.1. (this not right) Let H be an infinite-dimensional Hopf algebra

over a field K. If H has a non-zero left (right) integral, then any infinite-

dimensional Hopf subalgebra of H also has a non-zero left (right) integral.

Proof. It is know that H has a non-zero left integral if and only if H contains

a proper left coideal of finite codimension [13]. Suppose H has a non-zero left

integral, then H has a proper left coideal of finite codimension. Denote this

left coideal by C, then H/C is a finite dimensional space, and ∆(C) ⊂ H⊗C.

Let H1 be any infinite-dimensional Hopf subalgebra of H. Denote H1∩C by

C1. Then ∆(C1) ⊂ H1 ⊗ C1, since ∆(H1) ⊂ H1 ⊗ H1. That is, C1 is a left

coideal of H1.
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