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Abstract

A linear basis of quantum supergroup U,gl(1|1) is given, and the
nonexistence of non-zero right integral and non-zero left integral on
Uqgl(1|1) are proved. For some Hopf subalgebras of Uugl(1|1), we

construct non-zero right integrals and non-zero left integrals on them.

1 Introduction

Integrals of Hopf algebras, in particular, integrals of quasitriangular ribbon
Hopf algebras play an important role in construction of Hennings type of
invariants of 3-manifolds [1]. Without using representation theory of Hopf
algebras, Hennings points out a method to obtain 3-manifold invariants. Ac-

cording to Hennings, once directly labeling the link diagrams by elements of
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quasitriangular ribbon Hopf algebras, a universal invariants of links can be
obtained. In order to get 3-manifold invariants, certain linear functionals of
the Hopf algebra must be constants for a series of algebraic representation-
s of Kirby moves over a family of links that can be transformed mutually
under Kirby moves. The left integrals provide candidates for those linear
functionals. Over the past years, researchers have been looking for concrete
examples of quasitriangular ribbon Hopf algebras to try to work out invari-
ants for simple 3-manifolds [2][3][4]. As we know, all examples in the field are
non-graded quasitriangular ribbon Hopf algebras. In this paper, we consider
integrals of quantum supergroups, specifically, the simplest Z,-graded quan-
tum group U,gl(1|1). Although there is no non-zero right (or left) integrals
on U,gl(1]1), for some interesting subalgebras of U,gl(1|1), we get non-zero
right integrals and left integrals on them.

The paper is organized as follows. In Section 2 we recall basic structure of
U,9l(1|1) and give a linear base of U,gl(1|1). In Section 3 we discuss integrals
on U,gl(1|1), and we prove that there is no non-zero right integral or non-
zero left integral on U,gl(1]|1). Section 4 gives several Hopf subalgebras of
U,9l(1]1), and we construct right integrals and left integrals for them.

2 Quantum supergroup U,gl(1]1)

2.1 Superalgebra gl(1|1)

Recall that a vector superspace of super-dimension (pl|q) is a Zy-graded vector
space V = V@ V] whose 0-summand V' = V{, has dimension p and 1-summand

V =V} has dimension ¢ [7]. A complex vector superspace C? & C? is de-



noted by CPl4. The O-summand of the superspace is called bosonic part and
vectors belonging to bosonic part are called bosons. The 1-summand of the
superspace is called fermionic part and vectors belonging to fermionic part
are called fermions. All endomorphisms of the superspace CPl9 forms a Lie

super-algebra, which is denoted by gl(p|g). Concretely, the Lie super-algebra

A B
consists of (p|g) X (p|q) matrices M = . For this super-algebra,
C D
its bosonic part, or the even part, consists of ; the fermionic part,
0 D
0
the odd part, consists of . The Lie super-bracket is defined as

C 0
super-commutator [X,Y] = XY — (—1)%9(X)desM)y X where deg(X) is 0 if

X is a boson and deg(X) is 1 if X is a fermion. And the definition extends
linearly to the whole gl(1|1).

The Lie super-algebra gl(1|1) is generated by the following four elements:

E: s G: 5 X: Y: )

which satisfy the following relations:

(X,Y] = XY —(—1)deXde¥yx —p
X2 =0, Y2 =0,

G, X] = X, [G,)Y]=-Y

[E.G] = [E,X]=[EY]=0,



where

deg E = degG =0,

deg X = degY =1.

It is known those relations define the super-algebra gl(1|1).

2.2 Quantization of superalgebra gi(1|1)

The universal enveloping algebra Ugl(1]1) admits a deformation, which re-
sults in the quantum super-algebra U,gl(1|1) [9][10]. Notice that the mul-
tiplication in Ugl(1|1) is still written as regular product. We deform one
defining relation of Ugl(1]|1) about two odd generators X and Y. That is,
E_ ~E
X, Y] = XY — (—1)leeXdeeyyy — 4 9 _
q—4q
To make sense this non-algebraic expression, we join power series in F to
the algebra. Denote the parameter of the deformation by h, put ¢ = " and

write
h"E"
onp!

H = ¢B/2 = B2 = Z

n=0

Then, the quantum super-algebra U,gl(1]|1) has a generator set { G, X,
Y, H, H ! } and the defining relations:

HX =XH, HY =YH, HG=GH, H'W=YH'! (
H'X=XH' H'W=GH', HH'=H'H=1,
GX-XG=X, GY-YG=-Y, X*=0, Y?*=0, (3
H2 . H72

XY +YX = -
q9—q



If we denote the tensor algebra (the free associative algebra generated by
G, X, Y, H, H! over the complex field C) by T, we have U,gl(1]1) = T/I,
where [ is a two-sided ideal in T' generated by the following elements:
HG - GH, H'G-GH™,
HY —YH, HY -YH™,
HX — XH, H'X - XH™,
X? Y? HH'-1, H'H-1,

GX —XG-X, GY - YG+Y,
H?> - H™?
q—qt
In the quantum super-algebra U,gl(1|1), there is a structure of Hopf al-

XY +YX —

gebra when it is properly equipped with a comultiplication, a counit and an
antipode.

The comultiplication as an algebraic map
A Ugl(lfL) = Uygl(L]1) © Uygl(1]1)
can be defined as follows for generators,

AH)=H®H, AH)=H'o@H' AG)=G21+12G,

AX)=X@H'+HeoX, AY)=YoH'+H®Y,

and algebraically be extended to the whole U,gl(1]1) with preserving grades.
The graded tensor product follows

a®b-c®d=(—1)%*"4eqe  bd.
The counit as an algebraic map
£ Uygl(1l]l) = C
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can be assigned for generators as

and then be algebraically extended to the U,gl(1]1).

The antipode as an anti-algebraic map
S Uugl(1]1) — U,gl(1]1)
can be assigned for generators as

S(H) = H™', SH™Y=H,

and then be algebraically extended to the U,gl(1|1). Here the care need to

be take for the degrees of elements in the following fashion

S(AB) = (—1)%e4deBg(B)S(A).

We can easily verify that A, € and S are all well-defined as graded al-

gebraic maps. So (U,gl(1]1),-,A,n,¢e,S) is a Hopf super-algebra, which is

called quantum supergroup, where 7 is the unit.

In order to study integrals of U,gl(1|1), linear basis is important. We

therefore give a linear base in this section. Let’s first give some useful rela-

tions among generators.
Lemma 2.1.

G"X = X(G+1)",  XG"=(G-1)"X,
G"Y = Y(G-1)", YG"=(G+1)"X.



The proof of this lemma is straightforward by using mathematical induc-

tion.

Proposition 2.1. {H!G"X°Y™ :l € Z,n € Z*, §,7 € Zy} = A forms a
basis of quantum supergroup U,gl(1|1), where Zt is the set of nonnegative

integers.

Proof. We can directly verify this proposition by using the lemma 2.1 and
basic definitions. We also can verify this proposition by using standard ar-
guments as in the proof of the classical PBW theorem. Since the idea [ is
not homogeneous, 7'/1 = U,gl(1]|1) is not graded. However, it is a filtered
algebra. Therefore, the proposition is true [7][8]. O

3 Integrals of U,gl(1|1)

Let H be a Hopf algebra with multiplication -, unit n, comultiplication A,
counit € and antipode S. A right integral [ "on H is an element of H*, the
dual space of H, such that

(/T®z’d)oA:no/r,
/T-x*zﬂx*)/r,

where z* € H* and 7 is an augmentation of H* given by w(z*) = (z*, 1y).

or

Similarly, we can define left integrals on Hopf algebras [5][6]. For quantum
supergroup U,gl(1]1), we will prove there is no non-zero right integral or
non-zero left integral. We give a useful lemma about the comultiplication of

G™. It can be confirmed by induction.
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Lemma 3.1. Forn > 1,

A(G™) = (Z) G"F @ G*,
k=0
Theorem 3.1. There does not exist any non-zero right integral on the quan-

tum supergroup U,gl(1]1).

Proof. Suppose [" € U,gl(1|1)* is a non-zero right integral, according to the
definition of right integrals, ([" ®id)A =no [". So for x € U,gl(1]1),

([ witaw =ne [ @)

or %: /r(xa))m) = /T(fﬂ)l

There is a linear basis for quantum supergroup U,gl(1|1) as in Proposition
2.1. In order to prove the nonexistence of nonzero integrals, we only need
to verify that the value of the integral on each basis element of A must be
zero. For the convenience, we divide the basis elements into 4 types. The
same type elements share some common properties, so that the verification

becomes easier.

Type 1 basis elements : H', G", X, Y and the unit element 1. Apply the
definition of right integrals to X, we have ([’ ®id)A(X) = [7(X)1.

Then
/T(X)H‘1+/T(H)X:/T(X)1.

Since 1, H~', and X are all basis elements, the coefficients of their
linear combination must be zeroes. So, ["(X) = 0. Similarly, we can

get ["(Y) =0. When [ # 0, ([" ®id)A(H') = ["(H")1 implies that



["(HYH' = ["(H")1. That means ["(H') = 0 since H' and 1 are
not parallel vectors. When n = 1, ([ ®id)A(G) = ["(G)1 implies
that ["1 = 0. When n = 2, (" ®id)A(G?) = ["(G*)1 implies that
fT G = 0. Suppose fr G* =0 for k < n, then use Lemma 3.1, we have
n+2
2 T T
Z <n—;€_ > / (Gn+2—k)Gk :/ (HlGn+2)1.
k=0

This implies that [" G"*! = 0. Therefore, for any positive integer n,
[TGr=o.

Type 2 basis elements: H'G", H'X, H'Y, G"X, G"Y and XY. Let’s
compute the integral at each of these elements. From ([" ®id)A(XY) =
[T(XY)1, we have

r

/ (XY)H2— / (HY)H ' X+ / (HX)H 'Y + / (HHXY = / (XY)1.
Since this is a linear combination of 5 basis elements, ["(XY') must be
zero. For | # 0 and n # 0, from ([" ®id)A(H'G") = ["(H'G™)1, we
have the equation

> <Z) / (H'G" " H'GF = / (H'G™)1.

k=0
The linear independence of basis elements implies that [ (H'G") = 0.
When [ # 1, from ([ ®id)A(H'X) = ["(H'X)1 we get ["(H'X) = 0.

When [ = 1, we compute
AHGX)=HGX ®1+HX @G+ H*G® HX + H* ® HGX,

and apply integral, we get ["(HX)G+ ["(H>*G)HX. Therefore ["(HX) =
0. Since A(G"X) =31, ()G *X@H'G*+ HG" *©G*X), then
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Seo (MG PX)HIGE + [T(HG"%)GFX) = [7(G"X)1. This
implies ["(G"X) = 0. Since the generator Y plays exactly rule as X
does in generating relations, we can get ["(H'Y) =0and [ (G"Y) =0

without detailed computation.

Type 3 basis elements: H' XY, G"XY, H'G"X, H'G"Y. When [ # 2,
we compute that A(H'XY) = H'XY @ H=2 — HF'YY @ H71X +
HHX @ H7'YY + H*? ® H'XY, and apply the definition of right
integral. By the linear independence of basis elements, we must have
["(H'XY) =0. When [ = 2, write (|" ®id)A(H*GXY) = ["(H*GXY)1

out, and cancel the first term on both sides, we have
—~ / T(H?’G’Y)HX + / T(H?’GX)HY + / T(H4G)H2XY
+ / T(HQXY)G — / T(H?’Y)HGX + / T(H3X)HGY
+ /T(H“)HQGXY =0.

This equation implies [ (H?XY) = 0. When [ # 1, by Lemma 3.1,

we have A(H'G"X) = Y, () (H'G"*X @ H7'GF + HT'G"F
H'G*X). The equation

> (Z) ( / (H'G" " X)H'"'G*+ / (HH'G"MH'G"X) = / (H'G"X)1
k=0

implies that ["(H'G"X) = 0. When ! = 1, we compute ( [" ®id)A(HG*X) =
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["(HG*X)1, and we have
/T(HGQX)l +2/T(HGX)G+ /T(HX)Gz +
+/T(H2G2)HX + Z/T(HQG)HGX + /T(HQ)GQX
= /T(HGQX)L

From this equation, we have ["(HGX) = 0. Suppose ["(HG*X) =0
for k < n, we can check ["(HG"™X) =0 by using Lemma 3.1. Write
(J" @id)A(HG"™2X) = ["(HG"™X)1 out as

5 (n . 2) ([ erxet s [ e e,

k=0
we see [((HG"™X) = 0. We can get [ (H'G"Y) = 0 by replace X
by Y in above proof.

By using Lemma 3.1, we have

n

AGXY) =Y (Z) (G XY ® H2G* — HG"*Y

k=0
QH'G*"X + HG"*X @ H'G*"Y + H*G" " @ G*XY).

Apply the definition of right integrals, we get a linear combination
of some basis elements. Therefore, each coefficient must be zero, so

[M(G"XY) =0.

Type 4 basis elements: H'G"XY = z where [ # 0 and n # 0. We com-
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pute the comultiplication of x by using Lemma 3.1.

AH'G"XY) = H & H' - (”
( ) 2

(XoH'"+HX) (YOH '+HR®Y)

)G”"" ®G") -

= Z (Z) (HlGn—kXY ® Hl—QGk: _ Hl+1Gn—l<:Y ® Hl—leX
k=0
+Hl+1Gn—kX ® Hl—leY + HH—QGn—k ® HleXY)

Using the definition of right integral, we have
Z (Z) (/ (HZGn*kXy)Hlf2Gk . / (HlJrlanky)HlfleX
k=0

_|_/ (Hl+1Gn_kX)Hl_1GkY+/ (HZ+2Gn_k)HZGkXY)
= / (H'G"XY)1

The left-hand side of this equation is a linear combination of some
basis elements. When [ # 2, the vector ["(H'G"XY)1 is presented by
a linear combination of some other basis elements. But 1 is also a basis
element. Therefore, each coefficient must be zero. So, ["(H'G"XY) =
0. When [ = 2, for any positive integer n, the first term of the left-hand
side of the above equation is the same as its right-hand side. After these
two term are canceled out, the rest integral values must be zero since
they are coefficients of a linear combination of basis vectors which is
equal to zero. If we compute A(H2G?XY'), and apply definition of right
integrals, we get ["(H>GXY) = 0. Now let’s suppose ["(H*G*XY) =
0 for k& < n, we then compute A(H2G™"XY). After integration, we
have ["(H*G"M'XY) = 0.
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Considering all the cases, we can conclude that the only situation where
(/" ®1)A(z) =no ["(x) is satisfied is [* = 0. Therefore, there does not exit
non-zero right integral on U,gl(1]1). O

Theorem 3.2. There does not exit non-zero left integral on quantum super-

group U,gl(1]1).

The proof of this theorem is similar to that of Theorem 3.1.

4 Hopf subalgebras of U,gl(1|]1) and their in-
tegrals

From Theorems 3.1 and 3.2, it is impossible to use quantum supergroup
U,gl(1|1) to construct Hennings type invariants of 3-manifolds. Howev-
er,There are several Hopf subalgebras of the quantum supergroup U,gl(1]1).
We may construct integrals for them.

The Hopf subalgebra of U,gl(1|1) generated by H, X and Y is denoted by
(H, X,Y), the Hopf subalgebra generated by H is denoted by (H), and the
Hopf subalgebra generated by G is denoted by (G). These three subalgebras

are all infinite dimensional. The following theorem give their linear basis.

Theorem 4.1. The Hopf subalgebra (H, X,Y) has a linear basis given by
{H'X°YT 1€ Z,6,7 € Zy)}.
The Hopf subalgebra (H) has a linear basis H', where | € Z. The Hopf

subalgebra (G) has a linear basis G™, where | € Zs.
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The proof of this theorem is similar as that of Proposition 2.1.
Now let’s construct integrals on (H, X,Y). We define a linear function
/ . (H,X,Y) — C
by assigning [ H?XY =1, [" B = 0 for any other basis element B, and
then linearly extending to the whole algebra. We may write [* = (H2XY)*,
which is an element of the dual space (H, X,Y)*.

Theorem 4.2. [ is a right integral on the Hopf algebra (H,X,Y). All right

integrals form an one-dimensional subspace of (H, X, Y )*.

Proof. We check if the functional [* satisfies ([" ®1)A(z) = no ["(x) for
any basis element z, then [" must be (H2XY)* or some scale k multiple
of (H*XY)*. This implies the integral space is one dimensional. There are
three types of basis elements. Type one are H', X and Y, where [ # 0. Type
two are H'X, H'Y, XY and the unit 1. Type three is H' XY, where [ # 0.
We can check the [" at each basis element.

For type one basis elements, as the proof of Theorem 3.1, we can easily get
that ["(H') =0, [(X) =0, and ["(Y) = 0. For type two basis elements,
as the proof of Theorem 3.1, we have ["(H'X) =0 and ["(H'Y) = 0 when
[ # 1. And (["@DA(XY) = ["(XY)1 just implies that ["(XY) = 0,
["(HX) =0 and ["(HY) = 0. For type three basis elements, when [ # 2,

14



as the proof of Theorem 3.1, we have ["(H'XY) = 0. But, when [ = 2,
(/T®1)A(H2XY)
= / T(HQXY)l — / T(H?’Y)HX + / T(H3X)HY + / T(H4)H2XY
= / T(HQXY)I.

This just implies we can assign non-zero number to ["(H?XY), and they

form a subspace with dimension one. O]

We define another linear functional f ! as
I
/ . (H,X,)Y) —C

For basis element =z, flx = 1lwhenx = H2XY, and flx =0ifzr # H2XY.
This functional is the dual of H2XY, [' = (H™2XY)".

Theorem 4.3. fl is a left integral on Hopf subalgebra (H,X,Y). All left

integrals form an one-dimensional subspace of (H, X,Y)*.

The proof is similar as that of Theorem 4.3.

From the proof of Theorem 3.1, we have the following theorem about

integrals of Hopf subalgebras (H) and (G).

Theorem 4.4. The Hopf subalgebra (H) is the center of the Hopf algebras
U,gl(1|1), and it has a left integral which is also a right integral defined by
the dual of the unit element, [1 =1 and [ H' = 0. The Hopf subalgebra (G)

does not have a right or left integral.
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5 The quantum superalgebra U,gl(n|m) and
their sub superalgebras

The quantum superalgebra U, gl(n|m) is a free associative algebra over C with
a parameter g € C generated by generators k;, ki_l, wherei =1,2,---,n+m,
and generators e;, fj, where j =1,2,---,n+m — 1. The defining relations,
the Cartan-Kac relations, e-Serre relations, and f-Serre relations, are given

in the following [12].

The Cartan-Kac relations:

kik; = kjk;, kzkz_l = /C;lkz =1;

kiejkjl — q((sij*5ij+1)/2€j’ klfjk;l _ qf(éijféijJrl)/ij;
6ifj - .fjei =0, if i#y;

eifi = fiei = (KR — Kk D) /(a—a ), it i#m

enfn+ fnen = (/fzkiﬂ - k;zl{:;ﬁl)/(q - q_1>‘
The Serre relations for the e; (e-Serre relations):

eej =eje; if |i—j|#1, e, =0;

2 —1 2 _ O . 1:
eieiv1 — (@ +q )eieipie; +eipe; =0, i Fn,n+m—1
En€n—1€n€nti + €n—1€n€n41€n + En€n4+1€n€n—1 +

-1
€n+1€n€n—1€6n — (q + q )enen—len—‘rlen = 0.

The Serre relations for the f; (f-Serre relations): the relations are ob-

tained by replacing every e; by f; in e-Serre relations above.
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The Zs-grading is defined by the requirement that the only odd generators
are e, and f,. It can shown that U,gl(n|m) is a Hopf superalgebra with
comultiplication A, counit € and antipode S defined for generators as follows

and then graded-algebraically extended to the whole algebra.

e(ej) = e(f;)) =0, eki)=1L1
Alk) = ki® k,
Aley) = ¢ @kkih +k ke, if j#n,
Alen) = e, ®@kpkyyr + k' kL @ ey,
A(f)) = [i®@kikii+kikia®f;, if j#n,
Alfn) = fa®kokpr + k5 kL © fa.
Sth) = K,
Sle;) = —aej, S(f) =—af; i iFmn,
Slen) = —en, S(fn) = —fu
Lemma 5.1. The sub super algebra A, of U,gl(n|m) generated by k', ki,

e, and f, is isomorphic to U,gl(1|1). The A, is only subalgebra of Uygl(n|m)
which is isomorphic to Uygl(1|1).

Proof. Denote the sub super algebra generated by these 6 generators by A,.
Then A, has the following defining relations:

knky b =k ke =1, kpiak by = ko tikep = 1 (
k”k”"’l = k""‘lk"; kne”k;1 - qéen; knfnkrjl = q_%fn; (6
Fniienknts = 0 2en, kgt fakidy = 2 fa; €2 =0, (
enfot faen = (kikn — kK2 /(@ —a7) fi=0.
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We know U,gl(1]1) has 5 generators and the defining relations (1)-(4). Let
E;; be a 2 x 2 matrix whose (i, j) entry is 1 and the rest entries are all zero.
We define amap p: A, — U,gl(1|1) by assigning an element in U,gl(1]1)

to each generator of A, as follows:

plkn) = ¢"1%, p(k,') = ¢ /2,

G/2

Ex2/2 _ q , P(k%:il) —q

—Ex/2 _ —G/2
- )

p(kn—i-l) =dq
,O(en) =FEpp =Y, P(fn) = FEy =X,

q

then graded-algebraically extend to the whole algebra A,. p will be Hopf
algebra isomorphism preserving grading of elements. We first verify p is an
1—1 and onto algebraic isomorphism. It is not hard to get defining relations
for U,gl(1]1) from the defining relations (5)-(8) of A, by using the map p.
The generators H and H~' of U,gl(1|1) are given by p(k,kn.1) = H and
p(k; k1) = H™'. The generator G is given by the second term of the
Taylor expansion p(kn1) = ¢%/2. To see that, set ¢ = €, then ¢/ =
e"S = I 4+ hG + 5h*G? 4 - - -. The relations HH ' = H'H = 1 can be

obtained by writing p(knk, 'kni1k,11) = 1 in two ways.

HX = p(knkn+1)p(fn) = p(knkn-i-lfn) = p(knq1/2fnkn+1)
= p(ql/anfnknJrl) = p<q1/2q71/2fnknkn+l>
Similarly, we can get H'X = XH !, HY = YH, and H™'Y = YH L.
To get HG = GH and H'G = GH™', expand Hq%? = p(kpknyikni1) =

p(kni1knkni1) = ¢%/?H, and compare both sides in terms of parameter h. S-

ince p(kns1fn) = p(¢"? fakni1), then ¢¢/2X = ¢"/?X¢%/?. Using substitution
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q = €*", we have "X = "X ¢"“. Expand both sides,

1 1
X +hGX + 5hZGQX + §h3G3X + -

1 1 1
= X +hXG + 5h?XG2+yif”XGng---+hX+h?XG+5l7f‘)(c;2+
1 4 3 . 1 2 1 3 .
SNG4k X NG

we have GX = XG + X, G?X = X(G + 1)?, and G'X = X(G + 1)! for any

positive integer [. From Lemma 2.1, only essential relation is GX = XG+ X.

. K2k2  —ky %k ]
Similarly, we can get GY = YG—Y. From p(fnen+enfn) = p(—————15)

q—q~1

we have XY + VX = Z=H2 The ¢2 = 0 and f2 = 0 give X2 = 0 and

q9—q

9

Y2 = 0. So, the image of the generators of A, generate U,gl(1]1). p is an
1 — 1 and onto algebraic map.

Now we need to verify p is a Hopf algebra map. If use subscript A
for structure maps in A,, then we need check €4 = ¢p, Ap = (p ® p)Aa
and pSy = Sp. Or, use these equations to define Hopf algebra structure
on Uygl(1]1) from A,. For example, c4(kn1) = ep(knt1) gives (G) = 0.
Ap(kni1) = (p @ p)Au(knir) gives A(¢%/?) = ¢&/? ® ¢“/%. Expand in terms
of parameter h, and compare both sides, we have A(G) = G® 1+ 1® G,
A(G?) = G*@1+2GG+10G?*, A(G!) = ZZ:O (1) G"=*®G* for any positive
integer [. By Lemma 3.1, the only essential relation is A(G) = GR®1+1®G.

Ap(fn) = A(X)

= (p @ p)Au(fn) = (p @ p)(fr @ knkni1 + K, ks @ f)
—X®H+H'®X.

From pSa(kni1) = Sp(kny1) we have S(¢%/?) = ¢~%/2. Expand it, we get

S(G) = —@G. Similarly, we can confirm all other defining relations for Hopf
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algebra structure of U,gl(1|1).
By the defining relations (5)-(8) of U,gl(n|m), the only odd generators
are e, and f,. Therefore we can conclude that the A, is only sub super

algebra of U,gl(n|m) which is isomorphic to U,gl(1[1). O

Theorem 5.1. (this not right) Let H be an infinite-dimensional Hopf algebra
over a field K. If H has a non-zero left (right) integral, then any infinite-

dimensional Hopf subalgebra of H also has a non-zero left (right) integral.

Proof. 1t is know that H has a non-zero left integral if and only if H contains
a proper left coideal of finite codimension [13]. Suppose H has a non-zero left
integral, then H has a proper left coideal of finite codimension. Denote this
left coideal by C', then H/C is a finite dimensional space, and A(C') C H®C.
Let H; be any infinite-dimensional Hopf subalgebra of H. Denote H; N C by
Ci. Then A(C}) C H; ® C4, since A(Hy) C Hy ® Hy. That is, C} is a left
coideal of H;.

[

Acknowledgement 1. J.P. Tian would like to thank professor Xiao-Song
Lin for his useful suggestions, and acknowledge the partial support from Na-

tional Science Foundation upon agreement No.0112050.

References

[1] M.A. HENNINGS. Invariants of links and 3-manifolds obtained from Hopf
algebras. J. London Math. Soc.(2)54(1996),594-624.

20



2]

L.H.  KAUFFMAN and D.E.RADFORD. Invariants of 3-maniford de-
rived from finite dimensional Hopf algebras. J. Knot Theory Ramifica-

tion.(1)4(1995),131-162.

T. OHTSUKI. Invariants of 3-manifold derived from universal invariants

of framed links. Math. Proc. Camb. Phil. Sci.117(1995),259-273.

J.P. Tian. On several types of universal invariants of framed links and
3-manifolds derived from Hopf algebras. Math. Proc. Camb. Phil. Sci.
vol. 142(2007), no.1, 73-92.

M.E. SWEEDLER. Hopf Algebra. Mathematics Lecture Notes Series,
New York, W.A. Benjamin, 1969.

M.E. SWEEDLER. Integrals for Hopf algebras. Ann. Math. 89(1969),323-
335.

V.G. Kac. Lie superalgebras. Adv. Math. 26(1977),8-96.

V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations,
Springer-Verlag, New York, 1984

P.P. Kulish. Quantum Lie superalgebras and supergroups. In Problems

of Modern Quantum Field Theory. Springer-Verlag, (1989)14-21.

[10] L. Rozansky, H. Saleur. Quantum field theory for the multivariable

Alexander-Conway polynomials. Nuclear Physics B376 (1992),461-506.

[11] M. Scheunert, R.B. Zhang. Invariant integral on classical and quantum

Lie supergroups. J. Math. Phys. (8)42 (2001),3871-3897.

21



[12] T.D. Palev, N.I. Stoilova, J. Van der Jeugt, Finite-dimensional represen-
tations of the quantum superalgebra U,[gl(n|m)] and related g-identities,

Commun. Math. Phys. 166, 367-378 (1994).

[13] E. Abe, Hopf Algebras, Cambridge University Press, 1980.

22



