On integrals of Quantum Supergroup

$$
U_{q} g l(n \mid m)
$$

Jianjun Paul Tian*
Department of Mathematical Sciences

New Mexico State University, Las Cruces, NM 88001

Abstract

A linear basis of quantum supergroup $U_{q} g l(1 \mid 1)$ is given, and the nonexistence of non-zero right integral and non-zero left integral on $U_{q} g l(1 \mid 1)$ are proved. For some Hopf subalgebras of $U_{q} g l(1 \mid 1)$, we construct non-zero right integrals and non-zero left integrals on them.

1 Introduction

Integrals of Hopf algebras, in particular, integrals of quasitriangular ribbon Hopf algebras play an important role in construction of Hennings type of invariants of 3-manifolds [1]. Without using representation theory of Hopf algebras, Hennings points out a method to obtain 3-manifold invariants. According to Hennings, once directly labeling the link diagrams by elements of

[^0]quasitriangular ribbon Hopf algebras, a universal invariants of links can be obtained. In order to get 3-manifold invariants, certain linear functionals of the Hopf algebra must be constants for a series of algebraic representations of Kirby moves over a family of links that can be transformed mutually under Kirby moves. The left integrals provide candidates for those linear functionals. Over the past years, researchers have been looking for concrete examples of quasitriangular ribbon Hopf algebras to try to work out invariants for simple 3-manifolds [2][3][4]. As we know, all examples in the field are non-graded quasitriangular ribbon Hopf algebras. In this paper, we consider integrals of quantum supergroups, specifically, the simplest Z_{2}-graded quantum group $U_{q} g l(1 \mid 1)$. Although there is no non-zero right (or left) integrals on $U_{q} g l(1 \mid 1)$, for some interesting subalgebras of $U_{q} g l(1 \mid 1)$, we get non-zero right integrals and left integrals on them.

The paper is organized as follows. In Section 2 we recall basic structure of $U_{q} g l(1 \mid 1)$ and give a linear base of $U_{q} g l(1 \mid 1)$. In Section 3 we discuss integrals on $U_{q} g l(1 \mid 1)$, and we prove that there is no non-zero right integral or nonzero left integral on $U_{q} g l(1 \mid 1)$. Section 4 gives several Hopf subalgebras of $U_{q} g l(1 \mid 1)$, and we construct right integrals and left integrals for them.

2 Quantum supergroup $U_{q} g l(1 \mid 1)$

2.1 Superalgebra $g l(1 \mid 1)$

Recall that a vector superspace of super-dimension $(p \mid q)$ is a Z_{2}-graded vector space $V=V_{0} \oplus V_{1}$ whose 0-summand $V=V_{0}$ has dimension p and 1-summand $V=V_{1}$ has dimension $q[7]$. A complex vector superspace $C^{p} \oplus C^{q}$ is de-
noted by $C^{p \mid q}$. The 0 -summand of the superspace is called bosonic part and vectors belonging to bosonic part are called bosons. The 1-summand of the superspace is called fermionic part and vectors belonging to fermionic part are called fermions. All endomorphisms of the superspace $C^{p \mid q}$ forms a Lie super-algebra, which is denoted by $g l(p \mid q)$. Concretely, the Lie super-algebra consists of $(p \mid q) \times(p \mid q)$ matrices $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$. For this super-algebra, its bosonic part, or the even part, consists of $\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right)$; the fermionic part, the odd part, consists of $\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)$. The Lie super-bracket is defined as super-commutator $[X, Y]=X Y-(-1)^{\operatorname{deg}(X) \operatorname{deg}(Y)} Y X$, where $\operatorname{deg}(X)$ is 0 if X is a boson and $\operatorname{deg}(X)$ is 1 if X is a fermion. And the definition extends linearly to the whole $g l(1 \mid 1)$.

The Lie super-algebra $g l(1 \mid 1)$ is generated by the following four elements:

$$
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad G=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

which satisfy the following relations:

$$
\begin{aligned}
{[X, Y] } & =X Y-(-1)^{\operatorname{deg} X \operatorname{deg} Y} Y X=E \\
X^{2} & =0, \quad Y^{2}=0 \\
{[G, X] } & =X, \quad[G, Y]=-Y \\
{[E, G] } & =[E, X]=[E, Y]=0,
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{deg} E & =\operatorname{deg} G=0, \\
\operatorname{deg} X & =\operatorname{deg} Y=1
\end{aligned}
$$

It is known those relations define the super-algebra $g l(1 \mid 1)$.

2.2 Quantization of superalgebra $g l(1 \mid 1)$

The universal enveloping algebra $U g l(1 \mid 1)$ admits a deformation, which results in the quantum super-algebra $U_{q} g l(1 \mid 1)[9][10]$. Notice that the multiplication in $\operatorname{Ugl}(1 \mid 1)$ is still written as regular product. We deform one defining relation of $U g l(1 \mid 1)$ about two odd generators X and Y. That is,

$$
[X, Y]=X Y-(-1)^{\operatorname{deg} X \operatorname{deg} Y} Y X=\frac{q^{E}-q^{-E}}{q-q^{-1}}
$$

To make sense this non-algebraic expression, we join power series in E to the algebra. Denote the parameter of the deformation by h, put $q=e^{h}$ and write

$$
H=q^{E / 2}=e^{h E / 2}=\sum_{n=0} \frac{h^{n} E^{n}}{2^{n} n!}
$$

Then, the quantum super-algebra $U_{q} g l(1 \mid 1)$ has a generator set $\{G, X$, $\left.Y, H, H^{-1}\right\}$ and the defining relations:

$$
\begin{align*}
& H X=X H, \quad H Y=Y H, \quad H G=G H, \quad H^{-1} Y=Y H^{-1} \tag{1}\\
& H^{-1} X=X H^{-1}, \quad H^{-1} G=G H^{-1}, \quad H H^{-1}=H^{-1} H=1 \tag{2}\\
& G X-X G=X, \quad G Y-Y G=-Y, \quad X^{2}=0, \quad Y^{2}=0 \tag{3}\\
& X Y+Y X=\frac{H^{2}-H^{-2}}{q-q^{-1}} . \tag{4}
\end{align*}
$$

If we denote the tensor algebra (the free associative algebra generated by G, X, Y, H, H^{-1} over the complex field C) by T, we have $U_{q} g l(1 \mid 1)=T / I$, where I is a two-sided ideal in T generated by the following elements:

$$
\begin{aligned}
& H G-G H, \quad H^{-1} G-G H^{-1}, \\
& H Y-Y H, \quad H^{-1} Y-Y H^{-1}, \\
& H X-X H, \quad H^{-1} X-X H^{-1}, \\
& X^{2}, \quad Y^{2}, \quad H H^{-1}-1, \quad H^{-1} H-1, \\
& G X-X G-X, \quad G Y-Y G+Y, \\
& X Y+Y X-\frac{H^{2}-H^{-2}}{q-q^{-1}} .
\end{aligned}
$$

In the quantum super-algebra $U_{q} g l(1 \mid 1)$, there is a structure of Hopf algebra when it is properly equipped with a comultiplication, a counit and an antipode.

The comultiplication as an algebraic map

$$
\Delta: \quad U_{q} g l(1 \mid 1) \rightarrow U_{q} g l(1 \mid 1) \otimes U_{q} g l(1 \mid 1)
$$

can be defined as follows for generators,

$$
\begin{aligned}
& \Delta(H)=H \otimes H, \quad \Delta\left(H^{-1}\right)=H^{-1} \otimes H^{-1}, \quad \Delta(G)=G \otimes 1+1 \otimes G \\
& \Delta(X)=X \otimes H^{-1}+H \otimes X, \quad \Delta(Y)=Y \otimes H^{-1}+H \otimes Y
\end{aligned}
$$

and algebraically be extended to the whole $U_{q} g l(1 \mid 1)$ with preserving grades. The graded tensor product follows

$$
a \otimes b \cdot c \otimes d=(-1)^{\operatorname{deg} b \operatorname{deg} c} a c \otimes b d
$$

The counit as an algebraic map

$$
\varepsilon: \quad U_{q} g l(1 \mid 1) \rightarrow C
$$

can be assigned for generators as

$$
\begin{aligned}
& \varepsilon(H)=1, \quad \varepsilon\left(H^{-1}\right)=1, \quad \varepsilon(1)=1, \\
& \varepsilon(G)=0, \quad \varepsilon(X)=0, \quad \varepsilon(Y)=0,
\end{aligned}
$$

and then be algebraically extended to the $U_{q} g l(1 \mid 1)$.
The antipode as an anti-algebraic map

$$
S: \quad U_{q} g l(1 \mid 1) \rightarrow U_{q} g l(1 \mid 1)
$$

can be assigned for generators as

$$
\begin{array}{ll}
S(H)=H^{-1}, & S\left(H^{-1}\right)=H, \\
S(G)=-G, & S(X)=-X, \quad S(Y)=-Y
\end{array}
$$

and then be algebraically extended to the $U_{q} g l(1 \mid 1)$. Here the care need to be take for the degrees of elements in the following fashion

$$
S(A B)=(-1)^{\operatorname{deg} A \operatorname{deg} B} S(B) S(A) .
$$

We can easily verify that Δ, ε and S are all well-defined as graded algebraic maps. So $\left(U_{q} g l(1 \mid 1), \cdot, \Delta, \eta, \varepsilon, S\right)$ is a Hopf super-algebra, which is called quantum supergroup, where η is the unit.

In order to study integrals of $U_{q} g l(1 \mid 1)$, linear basis is important. We therefore give a linear base in this section. Let's first give some useful relations among generators.

Lemma 2.1.

$$
\begin{aligned}
G^{n} X & =X(G+1)^{n}, & X G^{n}=(G-1)^{n} X, \\
G^{n} Y & =Y(G-1)^{n}, & Y G^{n}=(G+1)^{n} X .
\end{aligned}
$$

The proof of this lemma is straightforward by using mathematical induction.

Proposition 2.1. $\left\{H^{l} G^{n} X^{\delta} Y^{\tau}: l \in Z, n \in Z^{+}, \delta, \tau \in Z_{2}\right\}=\Lambda$ forms a basis of quantum supergroup $U_{q} g l(1 \mid 1)$, where Z^{+}is the set of nonnegative integers.

Proof. We can directly verify this proposition by using the lemma 2.1 and basic definitions. We also can verify this proposition by using standard arguments as in the proof of the classical PBW theorem. Since the idea I is not homogeneous, $T / I=U_{q} g l(1 \mid 1)$ is not graded. However, it is a filtered algebra. Therefore, the proposition is true $[7][8]$.

3 Integrals of $U_{q} g l(1 \mid 1)$

Let H be a Hopf algebra with multiplication \cdot, unit η, comultiplication Δ, counit ϵ and antipode S. A right integral \int^{r} on H is an element of H^{*}, the dual space of H, such that

$$
\left(\int^{r} \otimes i d\right) \circ \Delta=\eta \circ \int^{r}
$$

or

$$
\int^{r} \cdot x^{*}=\pi\left(x^{*}\right) \int^{r}
$$

where $x^{*} \in H^{*}$ and π is an augmentation of H^{*} given by $\pi\left(x^{*}\right)=\left\langle x^{*}, 1_{H}\right\rangle$. Similarly, we can define left integrals on Hopf algebras [5][6]. For quantum supergroup $U_{q} g l(1 \mid 1)$, we will prove there is no non-zero right integral or non-zero left integral. We give a useful lemma about the comultiplication of G^{n}. It can be confirmed by induction.

Lemma 3.1. For $n \geq 1$,

$$
\Delta\left(G^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} G^{n-k} \otimes G^{k}
$$

Theorem 3.1. There does not exist any non-zero right integral on the quantum supergroup $U_{q} g l(1 \mid 1)$.

Proof. Suppose $\int^{r} \in U_{q} g l(1 \mid 1)^{*}$ is a non-zero right integral, according to the definition of right integrals, $\left(\int^{r} \otimes i d\right) \Delta=\eta \circ \int^{r}$. So for $x \in U_{q} g l(1 \mid 1)$,

$$
\begin{aligned}
& \left(\int^{r} \otimes i d\right) \Delta(x)=\eta \circ \int_{(x)}^{r}(x), \\
\text { or } \quad & \sum^{r}\left(x_{(1)}\right) x_{(2)}=\int^{r}(x) 1
\end{aligned}
$$

There is a linear basis for quantum supergroup $U_{q} g l(1 \mid 1)$ as in Proposition 2.1. In order to prove the nonexistence of nonzero integrals, we only need to verify that the value of the integral on each basis element of Λ must be zero. For the convenience, we divide the basis elements into 4 types. The same type elements share some common properties, so that the verification becomes easier.

Type 1 basis elements: H^{l}, G^{n}, X, Y and the unit element 1. Apply the definition of right integrals to X, we have $\left(\int^{r} \otimes i d\right) \Delta(X)=\int^{r}(X) 1$. Then

$$
\int^{r}(X) H^{-1}+\int^{r}(H) X=\int^{r}(X) 1
$$

Since 1, H^{-1}, and X are all basis elements, the coefficients of their linear combination must be zeroes. So, $\int^{r}(X)=0$. Similarly, we can get $\int^{r}(Y)=0$. When $l \neq 0,\left(\int^{r} \otimes i d\right) \Delta\left(H^{l}\right)=\int^{r}\left(H^{l}\right) 1$ implies that
$\int^{r}\left(H^{l}\right) H^{l}=\int^{r}\left(H^{l}\right) 1$. That means $\int^{r}\left(H^{l}\right)=0$ since H^{l} and 1 are not parallel vectors. When $n=1,\left(\int^{r} \otimes i d\right) \Delta(G)=\int^{r}(G) 1$ implies that $\int^{r} 1=0$. When $n=2,\left(\int^{r} \otimes i d\right) \Delta\left(G^{2}\right)=\int^{r}\left(G^{2}\right) 1$ implies that $\int^{r} G=0$. Suppose $\int^{r} G^{k}=0$ for $k \leq n$, then use Lemma 3.1, we have

$$
\sum_{k=0}^{n+2}\binom{n+2}{k} \int^{r}\left(G^{n+2-k}\right) G^{k}=\int^{r}\left(H^{l} G^{n+2}\right) 1
$$

This implies that $\int^{r} G^{n+1}=0$. Therefore, for any positive integer n, $\int^{r} G^{n}=0$.

Type 2 basis elements: $H^{l} G^{n}, H^{l} X, H^{l} Y, G^{n} X, G^{n} Y$ and $X Y$. Let's compute the integral at each of these elements. From $\left(\int^{r} \otimes i d\right) \Delta(X Y)=$ $\int^{r}(X Y) 1$, we have

$$
\int^{r}(X Y) H^{-2}-\int^{r}(H Y) H^{-1} X+\int^{r}(H X) H^{-1} Y+\int^{r}\left(H^{2}\right) X Y=\int^{r}(X Y) 1
$$

Since this is a linear combination of 5 basis elements, $\int^{r}(X Y)$ must be zero. For $l \neq 0$ and $n \neq 0$, from $\left(\int^{r} \otimes i d\right) \Delta\left(H^{l} G^{n}\right)=\int^{r}\left(H^{l} G^{n}\right) 1$, we have the equation

$$
\sum_{k=0}^{n}\binom{n}{k} \int^{r}\left(H^{l} G^{n-k}\right) H^{l} G^{k}=\int^{r}\left(H^{l} G^{n}\right) 1
$$

The linear independence of basis elements implies that $\int^{r}\left(H^{l} G^{n}\right)=0$. When $l \neq 1$, from $\left(\int^{r} \otimes i d\right) \Delta\left(H^{l} X\right)=\int^{r}\left(H^{l} X\right) 1$ we get $\int^{r}\left(H^{l} X\right)=0$. When $l=1$, we compute

$$
\Delta(H G X)=H G X \otimes 1+H X \otimes G+H^{2} G \otimes H X+H^{2} \otimes H G X
$$

and apply integral, we get $\int^{r}(H X) G+\int^{r}\left(H^{2} G\right) H X$. Therefore $\int^{r}(H X)=$ 0 . Since $\Delta\left(G^{n} X\right)=\sum_{k=0}^{n}\binom{n}{k}\left(G^{n-k} X \otimes H^{-1} G^{k}+H G^{n-k} \otimes G^{k} X\right)$, then
$\sum_{k=0}^{n}\binom{n}{k}\left(\int^{r}\left(G^{n-k} X\right) H^{-1} G^{k}+\int^{r}\left(H G^{n-k}\right) G^{k} X\right)=\int^{r}\left(G^{n} X\right) 1$. This implies $\int^{r}\left(G^{n} X\right)=0$. Since the generator Y plays exactly rule as X does in generating relations, we can get $\int^{r}\left(H^{l} Y\right)=0$ and $\int^{r}\left(G^{n} Y\right)=0$ without detailed computation.

Type 3 basis elements: $H^{l} X Y, G^{n} X Y, H^{l} G^{n} X, H^{l} G^{n} Y$. When $l \neq 2$, we compute that $\Delta\left(H^{l} X Y\right)=H^{l} X Y \otimes H^{l-2}-H^{l+1} Y \otimes H^{l-1} X+$ $H^{l+1} X \otimes H^{l-1} Y+H^{l+2} \otimes H^{l} X Y$, and apply the definition of right integral. By the linear independence of basis elements, we must have $\int^{r}\left(H^{l} X Y\right)=0$. When $l=2$, write $\left(\int^{r} \otimes i d\right) \Delta\left(H^{2} G X Y\right)=\int^{r}\left(H^{2} G X Y\right) 1$ out, and cancel the first term on both sides, we have

$$
\begin{aligned}
& -\int^{r}\left(H^{3} G Y\right) H X+\int^{r}\left(H^{3} G X\right) H Y+\int_{r}^{r}\left(H^{4} G\right) H^{2} X Y \\
& +\int^{r}\left(H^{2} X Y\right) G-\int^{r}\left(H^{3} Y\right) H G X+\int^{r}\left(H^{3} X\right) H G Y \\
& +\int^{r}\left(H^{4}\right) H^{2} G X Y=0
\end{aligned}
$$

This equation implies $\int^{r}\left(H^{2} X Y\right)=0$. When $l \neq 1$, by Lemma 3.1, we have $\Delta\left(H^{l} G^{n} X\right)=\sum_{k=0}^{n}\binom{n}{k}\left(H^{l} G^{n-k} X \otimes H^{l-1} G^{k}+H^{l+1} G^{n-k} \otimes\right.$ $\left.H^{l} G^{k} X\right)$. The equation
$\sum_{k=0}^{n}\binom{n}{k}\left(\int^{r}\left(H^{l} G^{n-k} X\right) H^{l-1} G^{k}+\int^{r}\left(H^{l+1} G^{n-k}\right) H^{l} G^{k} X\right)=\int^{r}\left(H^{l} G^{n} X\right) 1$
implies that $\int^{r}\left(H^{l} G^{n} X\right)=0$. When $l=1$, we compute $\left(\int^{r} \otimes i d\right) \Delta\left(H G^{2} X\right)=$
$\int^{r}\left(H G^{2} X\right) 1$, and we have

$$
\begin{aligned}
& \int^{r}\left(H G^{2} X\right) 1+2 \int^{r}(H G X) G+\int^{r}(H X) G^{2}+ \\
& +\int^{r}\left(H^{2} G^{2}\right) H X+2 \int^{r}\left(H^{2} G\right) H G X+\int^{r}\left(H^{2}\right) G^{2} X \\
& =\int^{r}\left(H G^{2} X\right) 1
\end{aligned}
$$

From this equation, we have $\int^{r}(H G X)=0$. Suppose $\int^{r}\left(H G^{k} X\right)=0$ for $k \leq n$, we can check $\int^{r}\left(H G^{n+1} X\right)=0$ by using Lemma 3.1. Write $\left(\int^{r} \otimes i d\right) \Delta\left(H G^{n+2} X\right)=\int^{r}\left(H G^{n+2} X\right) 1$ out as

$$
\sum_{k=0}^{n+2}\binom{n+2}{k}\left(\int^{r}\left(H G^{n+2-k} X\right) G^{k}+\int^{r}\left(H G^{n+2-k}\right) G^{k} X\right)
$$

we see $\int^{r}\left(H G^{n+1} X\right)=0$. We can get $\int^{r}\left(H^{l} G^{n} Y\right)=0$ by replace X by Y in above proof.

By using Lemma 3.1, we have

$$
\begin{aligned}
& \Delta\left(G^{n} X Y\right)=\sum_{k=0}^{n}\binom{n}{k}\left(G^{n-k} X Y \otimes H^{-2} G^{k}-H G^{n-k} Y\right. \\
& \left.\otimes H^{-1} G^{k} X+H G^{n-k} X \otimes H^{-1} G^{k} Y+H^{2} G^{n-k} \otimes G^{k} X Y\right)
\end{aligned}
$$

Apply the definition of right integrals, we get a linear combination of some basis elements. Therefore, each coefficient must be zero, so $\int^{r}\left(G^{n} X Y\right)=0$.

Type 4 basis elements: $H^{l} G^{n} X Y=x$ where $l \neq 0$ and $n \neq 0$. We com-
pute the comultiplication of x by using Lemma 3.1.

$$
\begin{aligned}
& \Delta\left(H^{l} G^{n} X Y\right)=H^{l} \otimes H^{l} \cdot\left(\sum_{k=0}^{n}\binom{n}{k} G^{n-k} \otimes G^{k}\right) \\
& \left(X \otimes H^{-1}+H \otimes X\right) \cdot\left(Y \otimes H^{-1}+H \otimes Y\right) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(H^{l} G^{n-k} X Y \otimes H^{l-2} G^{k}-H^{l+1} G^{n-k} Y \otimes H^{l-1} G^{k} X\right. \\
& \left.+H^{l+1} G^{n-k} X \otimes H^{l-1} G^{k} Y+H^{l+2} G^{n-k} \otimes H^{l} G^{k} X Y\right)
\end{aligned}
$$

Using the definition of right integral, we have

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\left(\int^{r}\left(H^{l} G^{n-k} X Y\right) H^{l-2} G^{k}-\int^{r}\left(H^{l+1} G^{n-k} Y\right) H^{l-1} G^{k} X\right. \\
& \left.+\int^{r}\left(H^{l+1} G^{n-k} X\right) H^{l-1} G^{k} Y+\int^{r}\left(H^{l+2} G^{n-k}\right) H^{l} G^{k} X Y\right) \\
= & \int^{r}\left(H^{l} G^{n} X Y\right) 1
\end{aligned}
$$

The left-hand side of this equation is a linear combination of some basis elements. When $l \neq 2$, the vector $\int^{r}\left(H^{l} G^{n} X Y\right) 1$ is presented by a linear combination of some other basis elements. But 1 is also a basis element. Therefore, each coefficient must be zero. So, $\int^{r}\left(H^{l} G^{n} X Y\right)=$ 0 . When $l=2$, for any positive integer n, the first term of the left-hand side of the above equation is the same as its right-hand side. After these two term are canceled out, the rest integral values must be zero since they are coefficients of a linear combination of basis vectors which is equal to zero. If we compute $\Delta\left(H^{2} G^{2} X Y\right)$, and apply definition of right integrals, we get $\int^{r}\left(H^{2} G X Y\right)=0$. Now let's suppose $\int^{r}\left(H^{2} G^{k} X Y\right)=$ 0 for $k \leq n$, we then compute $\Delta\left(H^{2} G^{n+2} X Y\right)$. After integration, we have $\int^{r}\left(H^{2} G^{n+1} X Y\right)=0$.

Considering all the cases, we can conclude that the only situation where $\left(\int^{r} \otimes 1\right) \Delta(x)=\eta \circ \int^{r}(x)$ is satisfied is $\int^{r}=0$. Therefore, there does not exit non-zero right integral on $U_{q} g l(1 \mid 1)$.

Theorem 3.2. There does not exit non-zero left integral on quantum supergroup $U_{q} g l(1 \mid 1)$.

The proof of this theorem is similar to that of Theorem 3.1.

4 Hopf subalgebras of $U_{q} g l(1 \mid 1)$ and their integrals

From Theorems 3.1 and 3.2, it is impossible to use quantum supergroup $U_{q} g l(1 \mid 1)$ to construct Hennings type invariants of 3-manifolds. However,There are several Hopf subalgebras of the quantum supergroup $U_{q} g l(1 \mid 1)$. We may construct integrals for them.

The Hopf subalgebra of $U_{q} g l(1 \mid 1)$ generated by H, X and Y is denoted by $\langle H, X, Y\rangle$, the Hopf subalgebra generated by H is denoted by $\langle H\rangle$, and the Hopf subalgebra generated by G is denoted by $\langle G\rangle$. These three subalgebras are all infinite dimensional. The following theorem give their linear basis.

Theorem 4.1. The Hopf subalgebra $\langle H, X, Y\rangle$ has a linear basis given by

$$
\left\{H^{l} X^{\delta} Y^{\tau}: l \in Z, \delta, \tau \in Z_{2}\right\} .
$$

The Hopf subalgebra $\langle H\rangle$ has a linear basis H^{l}, where $l \in Z$. The Hopf subalgebra $\langle G\rangle$ has a linear basis G^{n}, where $l \in Z_{\geq 0}$.

The proof of this theorem is similar as that of Proposition 2.1.
Now let's construct integrals on $\langle H, X, Y\rangle$. We define a linear function \int^{r},

$$
\int^{r} \quad: \quad\langle H, X, Y\rangle \longrightarrow C
$$

by assigning $\int^{r} H^{2} X Y=1, \int^{r} B=0$ for any other basis element B, and then linearly extending to the whole algebra. We may write $\int^{r}=\left(H^{2} X Y\right)^{*}$, which is an element of the dual space $\langle H, X, Y\rangle^{*}$.

Theorem 4.2. \int^{r} is a right integral on the Hopf algebra $\langle H, X, Y\rangle$. All right integrals form an one-dimensional subspace of $\langle H, X, Y\rangle^{*}$.

Proof. We check if the functional \int^{r} satisfies $\left(\int^{r} \otimes 1\right) \Delta(x)=\eta \circ \int^{r}(x)$ for any basis element x, then \int^{r} must be $\left(H^{2} X Y\right)^{*}$ or some scale k multiple of $\left(H^{2} X Y\right)^{*}$. This implies the integral space is one dimensional. There are three types of basis elements. Type one are H^{l}, X and Y, where $l \neq 0$. Type two are $H^{l} X, H^{l} Y, X Y$ and the unit 1 . Type three is $H^{l} X Y$, where $l \neq 0$. We can check the \int^{r} at each basis element.

For type one basis elements, as the proof of Theorem 3.1, we can easily get that $\int^{r}\left(H^{l}\right)=0, \int^{r}(X)=0$, and $\int^{r}(Y)=0$. For type two basis elements, as the proof of Theorem 3.1, we have $\int^{r}\left(H^{l} X\right)=0$ and $\int^{r}\left(H^{l} Y\right)=0$ when $l \neq 1$. And $\left(\int^{r} \otimes 1\right) \Delta(X Y)=\int^{r}(X Y) 1$ just implies that $\int^{r}(X Y)=0$, $\int^{r}(H X)=0$ and $\int^{r}(H Y)=0$. For type three basis elements, when $l \neq 2$,
as the proof of Theorem 3.1, we have $\int^{r}\left(H^{l} X Y\right)=0$. But, when $l=2$,

$$
\begin{aligned}
& \left(\int^{r} \otimes 1\right) \Delta\left(H^{2} X Y\right) \\
& =\int^{r}\left(H^{2} X Y\right) 1-\int^{r}\left(H^{3} Y\right) H X+\int^{r}\left(H^{3} X\right) H Y+\int^{r}\left(H^{4}\right) H^{2} X Y \\
& =\int^{r}\left(H^{2} X Y\right) 1
\end{aligned}
$$

This just implies we can assign non-zero number to $\int^{r}\left(H^{2} X Y\right)$, and they form a subspace with dimension one.

We define another linear functional \int^{l} as

$$
\int^{l} \quad: \quad\langle H, X, Y\rangle \longrightarrow C
$$

For basis element $x, \int^{l} x=1$ when $x=H^{-2} X Y$, and $\int^{l} x=0$ if $x \neq H^{-2} X Y$. This functional is the dual of $H^{-2} X Y, \int^{l}=\left(H^{-2} X Y\right)^{*}$.

Theorem 4.3. \int^{l} is a left integral on Hopf subalgebra $\langle H, X, Y\rangle$. All left integrals form an one-dimensional subspace of $\langle H, X, Y\rangle^{*}$.

The proof is similar as that of Theorem 4.3.
From the proof of Theorem 3.1, we have the following theorem about integrals of Hopf subalgebras $\langle H\rangle$ and $\langle G\rangle$.

Theorem 4.4. The Hopf subalgebra $\langle H\rangle$ is the center of the Hopf algebras $U_{q} g l(1 \mid 1)$, and it has a left integral which is also a right integral defined by the dual of the unit element, $\int 1=1$ and $\int H^{l}=0$. The Hopf subalgebra $\langle G\rangle$ does not have a right or left integral.

5 The quantum superalgebra $U_{q} g l(n \mid m)$ and their sub superalgebras

The quantum superalgebra $U_{q} g l(n \mid m)$ is a free associative algebra over \mathbb{C} with a parameter $q \in \mathbb{C}$ generated by generators k_{i}, k_{i}^{-1}, where $i=1,2, \cdots, n+m$, and generators e_{j}, f_{j}, where $j=1,2, \cdots, n+m-1$. The defining relations, the Cartan-Kac relations, e-Serre relations, and f-Serre relations, are given in the following [12].

The Cartan-Kac relations:

$$
\begin{aligned}
& k_{i} k_{j}=k_{j} k_{i}, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1 ; \\
& k_{i} e_{j} k_{i}^{-1}=q^{\left(\delta_{i j}-\delta_{i j+1}\right) / 2} e_{j}, \quad k_{i} f_{j} k_{i}^{-1}=q^{-\left(\delta_{i j}-\delta_{i j+1}\right) / 2} f_{j} ; \\
& e_{i} f_{j}-f_{j} e_{i}=0, \quad \text { if } \quad i \neq j ; \\
& e_{i} f_{i}-f_{i} e_{i}=\left(k_{i}^{2} k_{i+1}^{-2}-k_{i+1}^{2} k_{i}^{-2}\right) /\left(q-q^{-1}\right), \quad \text { if } \quad i \neq n ; \\
& e_{n} f_{n}+f_{n} e_{n}=\left(k_{n}^{2} k_{n+1}^{2}-k_{n}^{-2} k_{n+1}^{-2}\right) /\left(q-q^{-1}\right) .
\end{aligned}
$$

The Serre relations for the e_{i} (e-Serre relations):

$$
\begin{aligned}
& e_{i} e_{j}=e_{j} e_{i} \quad \text { if } \quad|i-j| \neq 1, \quad e_{n}=0 ; \\
& e_{i}^{2} e_{i+1}-\left(q+q^{-1}\right) e_{i} e_{i+1} e_{i}+e_{i+1} e_{i}^{2}=0, \quad i \neq n, n+m-1 ; \\
& e_{n} e_{n-1} e_{n} e_{n+1}+e_{n-1} e_{n} e_{n+1} e_{n}+e_{n} e_{n+1} e_{n} e_{n-1}+ \\
& e_{n+1} e_{n} e_{n-1} e_{n}-\left(q+q^{-1}\right) e_{n} e_{n-1} e_{n+1} e_{n}=0 .
\end{aligned}
$$

The Serre relations for the $f_{i}(f$-Serre relations): the relations are obtained by replacing every e_{i} by f_{i} in e-Serre relations above.

The \mathbb{Z}_{2}-grading is defined by the requirement that the only odd generators are e_{n} and f_{n}. It can shown that $U_{q} g l(n \mid m)$ is a Hopf superalgebra with comultiplication Δ, counit ε and antipode S defined for generators as follows and then graded-algebraically extended to the whole algebra.

$$
\begin{aligned}
\varepsilon\left(e_{j}\right) & =\varepsilon\left(f_{j}\right)=0, \quad \varepsilon\left(k_{i}\right)=1 \\
\Delta\left(k_{i}\right) & =k_{i} \otimes k_{i}, \\
\Delta\left(e_{j}\right) & =e_{j} \otimes k_{j} k_{j+1}^{-1}+k_{j}^{-1} k_{j+1} \otimes e_{j}, \quad \text { if } \quad j \neq n, \\
\Delta\left(e_{n}\right) & =e_{n} \otimes k_{n} k_{n+1}+k_{n}^{-1} k_{n+1}^{-1} \otimes e_{n}, \\
\Delta\left(f_{j}\right) & =f_{j} \otimes k_{j} k_{j+1}^{-1}+k_{j}^{-1} k_{j+1} \otimes f_{j}, \quad \text { if } \quad j \neq n, \\
\Delta\left(f_{n}\right) & =f_{n} \otimes k_{n} k_{n+1}+k_{n}^{-1} k_{n+1}^{-1} \otimes f_{n} . \\
S\left(k_{i}\right) & =k_{i}^{-1}, \\
S\left(e_{j}\right) & =-q e_{j}, \quad S\left(f_{j}\right)=-q f_{j}, \quad \text { if } \quad i \neq n, \\
S\left(e_{n}\right) & =-e_{n}, \quad S\left(f_{n}\right)=-f_{n} .
\end{aligned}
$$

Lemma 5.1. The sub super algebra A_{q} of $U_{q} g l(n \mid m)$ generated by $k_{n}^{ \pm 1}, k_{n+1}^{ \pm 1}$, e_{n} and f_{n} is isomorphic to $U_{q} g l(1 \mid 1)$. The A_{q} is only subalgebra of $U_{q} g l(n \mid m)$ which is isomorphic to $U_{q} g l(1 \mid 1)$.

Proof. Denote the sub super algebra generated by these 6 generators by A_{q}. Then A_{q} has the following defining relations:

$$
\begin{align*}
& k_{n} k_{n}^{-1}=k_{n}^{-1} k_{n}=1, \quad k_{n+1} k_{n+1}^{-1}=k_{n+1}^{-1} k_{n+1}=1 ; \tag{5}\\
& k_{n} k_{n+1}=k_{n+1} k_{n} ; \quad k_{n} e_{n} k_{n}^{-1}=q^{\frac{1}{2}} e_{n}, \quad k_{n} f_{n} k_{n}^{-1}=q^{-\frac{1}{2}} f_{n} ; \tag{6}\\
& k_{n+1} e_{n} k_{n+1}^{-1}=q^{-\frac{1}{2}} e_{n}, \quad k_{n+1} f_{n} k_{n+1}^{-1}=q^{\frac{1}{2}} f_{n} ; \quad e_{n}^{2}=0, \tag{7}\\
& e_{n} f_{n}+f_{n} e_{n}=\left(k_{n}^{2} k_{n+1}^{2}-k_{n}^{-2} k_{n+1}^{-2}\right) /\left(q-q^{-1}\right) ; \quad f_{n}^{2}=0 . \tag{8}
\end{align*}
$$

We know $U_{q} g l(1 \mid 1)$ has 5 generators and the defining relations (1)-(4). Let $E_{i j}$ be a 2×2 matrix whose (i, j) entry is 1 and the rest entries are all zero. We define a map $\rho: \quad A_{q} \longrightarrow U_{q} g l(1 \mid 1)$ by assigning an element in $U_{q} g l(1 \mid 1)$ to each generator of A_{q} as follows:

$$
\begin{aligned}
& \rho\left(k_{n}\right)=q^{E_{11} / 2}, \quad \rho\left(k_{n}^{-1}\right)=q^{-E_{11} / 2} \\
& \rho\left(k_{n+1}\right)=q^{E_{22} / 2}=q^{G / 2}, \quad \rho\left(k_{n+1}^{-1}\right)=q^{-E_{22} / 2}=q^{-G / 2} \\
& \rho\left(e_{n}\right)=E_{12}=Y, \quad \rho\left(f_{n}\right)=E_{21}=X,
\end{aligned}
$$

then graded-algebraically extend to the whole algebra A_{q}. ρ will be Hopf algebra isomorphism preserving grading of elements. We first verify ρ is an $1-1$ and onto algebraic isomorphism. It is not hard to get defining relations for $U_{q} g l(1 \mid 1)$ from the defining relations (5)-(8) of A_{q} by using the map ρ. The generators H and H^{-1} of $U_{q} g l(1 \mid 1)$ are given by $\rho\left(k_{n} k_{n+1}\right)=H$ and $\rho\left(k_{n}^{-1} k_{n+1}^{-1}\right)=H^{-1}$. The generator G is given by the second term of the Taylor expansion $\rho\left(k_{n+1}\right)=q^{G / 2}$. To see that, set $q=e^{2 h}$, then $q^{G / 2}=$ $e^{h G}=I+h G+\frac{1}{2!} h^{2} G^{2}+\cdots$. The relations $H H^{-1}=H^{-1} H=1$ can be obtained by writing $\rho\left(k_{n} k_{n}^{-1} k_{n+1} k_{n+1}^{-1}\right)=1$ in two ways.

$$
\begin{aligned}
H X & =\rho\left(k_{n} k_{n+1}\right) \rho\left(f_{n}\right)=\rho\left(k_{n} k_{n+1} f_{n}\right)=\rho\left(k_{n} q^{1 / 2} f_{n} k_{n+1}\right) \\
& =\rho\left(q^{1 / 2} k_{n} f_{n} k_{n+1}\right)=\rho\left(q^{1 / 2} q^{-1 / 2} f_{n} k_{n} k_{n+1}\right) \\
& =\rho\left(f_{n}\right) \rho\left(k_{n} k_{n+1}\right)=H X
\end{aligned}
$$

Similarly, we can get $H^{-1} X=X H^{-1}, H Y=Y H$, and $H^{-1} Y=Y H^{-1}$. To get $H G=G H$ and $H^{-1} G=G H^{-1}$, expand $H q^{G / 2}=\rho\left(k_{n} k_{n+1} k_{n+1}\right)=$ $\rho\left(k_{n+1} k_{n} k_{n+1}\right)=q^{G / 2} H$, and compare both sides in terms of parameter h. Since $\rho\left(k_{n+1} f_{n}\right)=\rho\left(q^{1 / 2} f_{n} k_{n+1}\right)$, then $q^{G / 2} X=q^{1 / 2} X q^{G / 2}$. Using substitution
$q=e^{2 h}$, we have $e^{h G} X=e^{h} X q^{h G}$. Expand both sides,

$$
\begin{aligned}
& X+h G X+\frac{1}{2!} h^{2} G^{2} X+\frac{1}{3!} h^{3} G^{3} X+\cdots \\
& =X+h X G+\frac{1}{2!} h^{2} X G^{2}+\frac{1}{3!} h^{3} X G^{3}+\cdots+h X+h^{2} X G+\frac{1}{2!} h^{3} X G^{2}+ \\
& \frac{1}{3!} h^{4} X G^{3}+\cdots+\frac{1}{2!} h^{2} X+\frac{1}{2!} h^{3} X G+\cdots,
\end{aligned}
$$

we have $G X=X G+X, G^{2} X=X(G+1)^{2}$, and $G^{l} X=X(G+1)^{l}$ for any positive integer l. From Lemma 2.1, only essential relation is $G X=X G+X$. Similarly, we can get $G Y=Y G-Y$. From $\rho\left(f_{n} e_{n}+e_{n} f_{n}\right)=\rho\left(\frac{k_{n}^{2} k_{n+1}^{2}-k_{n}^{-2} k_{n+1}^{-2}}{q-q^{-1}}\right)$, we have $X Y+Y X=\frac{H^{2}-H^{-2}}{q-q^{-1}}$. The $e_{n}^{2}=0$ and $f_{n}^{2}=0$ give $X^{2}=0$ and $Y^{2}=0$. So, the image of the generators of A_{q} generate $U_{q} g l(1 \mid 1) . \rho$ is an 1-1 and onto algebraic map.

Now we need to verify ρ is a Hopf algebra map. If use subscript A for structure maps in A_{q}, then we need check $\varepsilon_{A}=\varepsilon \rho, \Delta \rho=(\rho \otimes \rho) \Delta_{A}$ and $\rho S_{A}=S \rho$. Or, use these equations to define Hopf algebra structure on $U_{q} g l(1 \mid 1)$ from A_{q}. For example, $\varepsilon_{A}\left(k_{n+1}\right)=\varepsilon \rho\left(k_{n+1}\right)$ gives $\varepsilon(G)=0$. $\Delta \rho\left(k_{n+1}\right)=(\rho \otimes \rho) \Delta_{A}\left(k_{n+1}\right)$ gives $\Delta\left(q^{G / 2}\right)=q^{G / 2} \otimes q^{G / 2}$. Expand in terms of parameter h, and compare both sides, we have $\Delta(G)=G \otimes 1+1 \otimes G$, $\Delta\left(G^{2}\right)=G^{2} \otimes 1+2 G \otimes G+1 \otimes G^{2}, \Delta\left(G^{l}\right)=\sum_{k=0}^{l}\binom{l}{k} G^{l-k} \otimes G^{k}$ for any positive integer l. By Lemma 3.1, the only essential relation is $\Delta(G)=G \otimes 1+1 \otimes G$.

$$
\begin{aligned}
& \Delta \rho\left(f_{n}\right)=\Delta(X) \\
& =(\rho \otimes \rho) \Delta_{A}\left(f_{n}\right)=(\rho \otimes \rho)\left(f_{n} \otimes k_{n} k_{n+1}+k_{n}^{-1} k_{n+1}^{-1} \otimes f_{n}\right) \\
& =X \otimes H+H^{-1} \otimes X
\end{aligned}
$$

From $\rho S_{A}\left(k_{n+1}\right)=S \rho\left(k_{n+1}\right)$ we have $S\left(q^{G / 2}\right)=q^{-G / 2}$. Expand it, we get $S(G)=-G$. Similarly, we can confirm all other defining relations for Hopf
algebra structure of $U_{q} g l(1 \mid 1)$.
By the defining relations (5)-(8) of $U_{q} g l(n \mid m)$, the only odd generators are e_{n} and f_{n}. Therefore we can conclude that the A_{q} is only sub super algebra of $U_{q} g l(n \mid m)$ which is isomorphic to $U_{q} g l(1 \mid 1)$.

Theorem 5.1. (this not right) Let H be an infinite-dimensional Hopf algebra over a field K. If H has a non-zero left (right) integral, then any infinitedimensional Hopf subalgebra of H also has a non-zero left (right) integral.

Proof. It is know that H has a non-zero left integral if and only if H contains a proper left coideal of finite codimension [13]. Suppose H has a non-zero left integral, then H has a proper left coideal of finite codimension. Denote this left coideal by C, then H / C is a finite dimensional space, and $\Delta(C) \subset H \otimes C$. Let H_{1} be any infinite-dimensional Hopf subalgebra of H. Denote $H_{1} \cap C$ by C_{1}. Then $\Delta\left(C_{1}\right) \subset H_{1} \otimes C_{1}$, since $\Delta\left(H_{1}\right) \subset H_{1} \otimes H_{1}$. That is, C_{1} is a left coideal of H_{1}.

Acknowledgement 1. J.P. Tian would like to thank professor Xiao-Song Lin for his useful suggestions, and acknowledge the partial support from National Science Foundation upon agreement No.0112050.

References

[1] M.A. HENNINGS. Invariants of links and 3-manifolds obtained from Hopf algebras. J. London Math. Soc.(2)54(1996),594-624.
[2] L.H. KAUFFMAN and D.E.RADFORD. Invariants of 3-maniford derived from finite dimensional Hopf algebras. J. Knot Theory Ramifica-tion.(1)4(1995),131-162.
[3] T. OHTSUKI. Invariants of 3-manifold derived from universal invariants of framed links. Math. Proc. Camb. Phil. Sci.117(1995),259-273.
[4] J.P. Tian. On several types of universal invariants of framed links and 3-manifolds derived from Hopf algebras. Math. Proc. Camb. Phil. Sci. vol. 142(2007), no.1, 73-92.
[5] M.E. SWEEDLER. Hopf Algebra. Mathematics Lecture Notes Series, New York, W.A. Benjamin, 1969.
[6] M.E. SWEEDLER. Integrals for Hopf algebras. Ann. Math. 89(1969),323335.
[7] V.G. Kac. Lie superalgebras. Adv. Math. 26(1977),8-96.
[8] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, 1984
[9] P.P. Kulish. Quantum Lie superalgebras and supergroups. In Problems of Modern Quantum Field Theory. Springer-Verlag, (1989)14-21.
[10] L. Rozansky, H. Saleur. Quantum field theory for the multivariable Alexander-Conway polynomials. Nuclear Physics B376 (1992),461-506.
[11] M. Scheunert, R.B. Zhang. Invariant integral on classical and quantum Lie supergroups. J. Math. Phys. (8)42 (2001),3871-3897.
[12] T.D. Palev, N.I. Stoilova, J. Van der Jeugt, Finite-dimensional representations of the quantum superalgebra $U_{q}[g l(n \mid m)]$ and related q-identities, Commun. Math. Phys. 166, 367-378 (1994).
[13] E. Abe, Hopf Algebras, Cambridge University Press, 1980.

[^0]: *Email: jtian@nmsu.edu

